Metalysis’ titanium powder used to 3D print automotive parts

December 10, 2013

December 10, 2013

Metalysis Ltd, Rotherham, UK, has announced that low-cost titanium powders developed by the company have been used to 3D print automotive parts for the first time.

The use of titanium powders in 3D printing has been prohibitively expensive until now because titanium powders currently sell for $200 – $400 per kilogram, states Metalysis. Metalysis has developed a new way of producing low-cost titanium powder, which it believes will heralds a new era in Additive Manufacturing and see greater use of titanium in components across the automotive, aerospace and defence industries.


Low-cost titanium powders developed by Metalysis

have been used to 3D print automotive parts

In a further development, the titanium powder used to manufacture the automotive parts is also a world-first, as Metalysis has created titanium from rutile sand, a naturally occurring titanium ore present in beach sands, in one single step. The use of this inexpensive and plentiful feedstock for titanium manufacture will dramatically reduce the cost of titanium production, allowing its increased use.

The Metalysis process is radically cheaper and environmentally benign compared with existing titanium production methods, states the company. Currently, the manufacture of titanium powder involves taking the metal sponge produced by the Kroll process, which is then processed into ingot billets, melted into bar form and finally atomised into powder, resulting in a costly and labour-intensive four-step process. Metalysis takes rutile and transforms it directly into powdered titanium using electrolysis. The low-cost titanium powder can be used in a variety of new applications whereas previously the metal has been excessively expensive for use in mass production of lower value items.


3D printed parts of a turbo charger for a car engine

The Mercury Centre, which sits within the Department of Materials at Sheffield University, used Renishaw’s 3D printer to make the parts, demonstrating the feasibility of producing titanium components using additive layer manufacturing. 3D printing brings further cost benefits by reducing waste because the current means of production is subtractive, as components are shaped out of metal billets, which wastes a huge amount of material. Metalysis’ low-cost titanium powder enables additive manufacturing with its metal powder, thereby reducing the quantity of material required.

In addition to titanium, Metalysis is developing tantalum powder and will use its technology to produce a wide range of specialist metals (including rare earths). Furthermore, innovative alloys can be produced using Metalysis’ technology because the process is conducted in the solid state, hence metals with significantly different densities or melting points can be alloyed. Metal powders created by the Metalysis process can be engineered to get particle size and distribution correct for a range of PM applications.

Vice-Chancellor Professor Sir Keith Burnett FRS from The University of Sheffield stated, “We are delighted that this innovative work is being undertaken in the University of Sheffield’s world-leading Faculty of Engineering. Most people associate 3D printing with plastic parts, but, with Metalysis’ titanium powder, we have for the first time demonstrated its potential in the manufacturing of metal parts. This is potentially a significant breakthrough for the many sectors which can benefit from its low-cost production. We look forward to continue working with Metalysis as they develop this ground-breaking technology.”

Dion Vaughan, CEO of Metalysis added, “Metalysis’ rutile-derived titanium powder is produced at lower cost and is suitable for 3D printing so that manufacturing metal components becomes more economical. The Metalysis process could reduce the price of titanium by as much as 75%, making titanium almost as cheap as specialty steels. We believe that titanium made by the Metalysis process could replace the current use of aluminium and steel in many products. This world-first for a titanium 3D printed component brings us a step closer to making this a reality.” 


December 10, 2013

In the latest issue of PM Review…

Download PDF

Extensive Powder Metallurgy industry news coverage, and the following exclusive deep-dive articles and reports:

  • Phoenix Sintered Metals: A story of transformation, growth and community from America’s PM heartland
  • World PM2024 Yokohama: The stage is set for the PM industry to find a path to sustainable growth
  • The state of Europe’s hard magnets industry and the challenge of optimising the mass production of Nd2Fe14B permanent magnets

The latest news from the world of metal powders, delivered to your inbox

Don't miss any new issue of PM Review, and get the latest industry news. Sign up to our weekly newsletter.

Sign up

Join our community

Discover our magazine archive…

The free-to-access PM Review magazine archive offers unparalleled insight into the world of Powder Metallurgy from a commercial and technological perspective through:

  • Reports on visits to leading PM part manufacturers, metal powder manufacturers and industry suppliers
  • Articles on technology and application trends
  • Information on materials developments
  • Reviews of key technical presentations from the international conference circuit
  • International industry news

All past issues are available to download as free PDFs or view in your browser.


Browse the archive


Looking for PM production equipment, metal powders, R&D support and more?

Discover suppliers of these and more in our
advertisers’ index and buyer’s guide, available in the back of PM Review magazine.

  • Powders & materials
  • Powder process, classification & analysis
  • PM products
  • Atomisers & powder production technology
  • Compaction presses, tooling & ancillaries
  • Sintering equipment & ancillaries
  • Post-processing
  • Consulting & toll sintering
View online
Share via
Copy link