Improved MgB2 superconductors using spark plasma sintering and pulse magnetisation

October 9, 2021

In a study published in Materials Science and Engineering: B, a team of researchers from Shibaura Institute of Technology (SIT), Japan, recently shared how they have enhanced the trapped magnetic field in bulk MgB2 superconductors by fabricating highly-dense, non-porous MgB2 bulks.

Since the discovery of superconductivity phenomena in 1911, scientists have been searching for feasible materials that reach their superconducting state at higher temperatures, enabling them to be operated with cheaper coolants or advanced cryocoolers.

Out of the many types of viable materials, MgB2 superconductors have an operating temperature of 39 K, which lies between conventional metallic superconductors and high-temperature cuprate superconductors. This means that it occupies a unique position where its intermediate operating temperature is offset by its unique material and electric properties.

MgB2 superconductors are non-toxic, lightweight materials that can be fabricated by simple sintering processes and have current densities similar to that of conventional metallic superconductors. These properties make them suitable for applications that require cheap and lightweight superconductors (e.g., in space applications and electric machines).

However, the sintering of MgB2 superconductors is performed at ambient pressures, and it results in a highly porous material that has less than optimal superconducting properties. More specifically, the porous nature of the superconductor limits the magnetic field it can trap and hold.

“[This] is the first study in which large, 40 mm diameter MgB2 bulks with 99.8% packing ratio were fabricated via SPS,” stated Muralidhar Miryala, professor at the Graduate School of Science and Engineering and Board of Councilor at Shibaura Institute of Technology who led the study.

Using spark plasma sintering (SPS), the researchers heated commercially available MgB2 powder with pulsed electrical current at high pressures of 50 MPa. The prepared sample was of similar quality to those prepared by conventional sintering methods and had very little impurities. The high packing density was found to improve the current density and the strength of the material.

On comparing their samples with dense bulks prepared via an alternative high-pressure Hot Isostatic Pressing (HIP) technique, the researchers found that the SPS bulks displayed superior strengths and had bending strengths eight times that of the HIP-processed bulks.

A similar improvement in trapped field (TP) performance was noticed in the highly-dense samples, where their increased current density enhanced their ability to trap and hold magnetic fields. On examining the TP performance by magnetising the samples and measuring the TP at temperatures of 14 K and 20 K, the researchers found that the MgB2 bulk showed high TP for external magnetic fields up to 1.6 tesla. However, when large external magnetic fields were applied, the poor thermal conductivity of the material caused the material to overheat and the TP value to drop.

Despite its thermal limitations, the highly dense MgB2 superconductors are a significant improvement over their conventionally sintered counterparts.

“The large SPS MgB2 bulks produced this way can have wide applications as superconductors, and our study also paves the way for further enhancing and realising the commercialisation of these superconductors,” explained Prof Miryala.

Space exploration and electric transport, which necessitate cheaper, lighter, and more affordable superconductors, may soon be made more efficient using these MgB2 superconductors.

In the latest issue of PM Review…

Download PDF

Extensive Powder Metallurgy industry news coverage, and the following exclusive deep-dive articles and reports:

  • “Scrap is the new gold” and other hardmetal and hard materials insights from Euro PM2023 Congress, Lisbon
  • IperionX: A Powder Metallurgy route to lower-cost recycled titanium plate, billet, bar and preforms with reduced CO2 emissions
  • A review of the sintering of iron-copper-carbon alloys for structural Powder Metallurgy applications

The latest news from the world of metal powders, delivered to your inbox

Don't miss any new issue of PM Review, and get the latest industry news. Sign up to our weekly newsletter.

Sign up

Join our community

Discover our magazine archive…

The free-to-access PM Review magazine archive offers unparalleled insight into the world of Powder Metallurgy from a commercial and technological perspective through:

  • Reports on visits to leading PM part manufacturers, metal powder manufacturers and industry suppliers
  • Articles on technology and application trends
  • Information on materials developments
  • Reviews of key technical presentations from the international conference circuit
  • International industry news

All past issues are available to download as free PDFs or view in your browser.


Browse the archive


Looking for PM production equipment, metal powders, R&D support and more?

Discover suppliers of these and more in our
advertisers’ index and buyer’s guide, available in the back of PM Review magazine.

  • Powders & materials
  • Powder process, classification & analysis
  • PM products
  • Atomisers & powder production technology
  • Compaction presses, tooling & ancillaries
  • Sintering equipment & ancillaries
  • Post-processing
  • Consulting & toll sintering
View online
Share via
Copy link