High strength, lightweight aluminium alloy by metal injection moulding

January 29, 2009

Aluminium metal injection moulding (MIM) is considered to have great potential to successfully compete with aluminium die casting because of the ability of the injection moulding process to produce parts more economically and with much thinner walled sections and more intricate shapes. However, many MIM aluminium parts, such as heat sinks, already in production do not have adequate mechanical properties for load bearing applications because they are made from pure rather than alloyed powder. Aluminium alloy MIM parts would offer mechanical properties approaching those of conventionally processed Al alloys and open up prospective applications in consumer electronic products, office equipment, hand tools and even automotive parts.

Fig. 1 Sintered density of AA6061+x%Sn powders....The key issue facing MIM producers wanting to develop aluminium alloy MIM parts is sintering and the need to overcome the oxide film on aluminium powder particles. The oxide film is a sintering barrier and needs to be removed or disrupted in order to achieve densification and high density sintered MIM parts. Researchers at the ARC Centre of Excellence for Design in Light Metals at the University of Queensland, Australia, have succeeded in developing and patenting (Wipo Patent WO/2008/017111) a process for sintering of Al alloy MIM parts using AA6061 alloy powders (Al-Fe-Si-Cu-Mg-Cr) with near full density and with good mechanical properties in the sintered, T4 and T6 heat treated condition.

Graham Schaffer and Zhenyun Liu report in a paper published the June 2008 issue of Powder Metallurgy (pp78-83) that under appropriate conditions, including compositional and environment control, the oxide barrier can be overcome without the need for mechanical shear to the aluminium alloy (AA6061) powder. They state that spherical AA6061 grade powders having D50 of 13.4µm were used and 2 wt% tin powder having <43µm particle size was added to the aluminium alloy powder as a liquid phase sintering aid. The feedstock produced by premixing the powders and binders, compounding and extruding, is said to have a powder loading of 82.9 wt%.

The binder system is said to consist of 3% stearic acid, 52% palm oil wax, and 45% high density polyethylene. The feedstock was used to produce injection moulded test bars and demonstration parts. Solvent debinding was conducted in hexane to extract more than 90% of the wax and stearic acid. The thermal debinding of the remaining binder and sintering was done in one furnace cycle with sacrificial magnesium blocks placed on the sintering tray surrounding the parts. The magnesium blocks serve as an oxygen getter and without these magnesium pieces the outer surface of the aluminium alloy MIM parts would not sinter.

Fig 2 Typical tensile curve of PIM AA6061+2Sn....Schaffer and Liu report that the addition of 2 wt% tin powder was an effective aid to sintering by significantly increasing the sintered density and expanding the sintering window for the aluminium alloy used in MIM. The combination of adding tin powder and sintering in nitrogen atmosphere resulted in ~95% or higher sintered density in the sintering temperature window of 600-6300C for 2 hours. The nitrogen atmosphere used also allowed the formation of AlN in the microstructure which the researchers state provides structural rigidity, enhanced dimensional accuracy and prevention of grain growth. Shrinkage of the injection moulded parts was uniform and parts were distortion free.

Fig 3 MIM demonstration parts showing that thin walled sections....The tensile strength achieved for the AA6061 MIM material was around 160, 210 and 300 MPa and elongation to failure is about 9.5%, 10.4% and 1.5% in as-sintered, T4 and T6 condition respectively. However, the researchers stress that the process is not restricted to AA6061 alloy and that other grades of aluminium alloys may also be used with this technology.

The project to develop the MIM aluminium alloy process was funded by Cooltemp Pty Ltd, the Aluminium Powder Company, and the Australian Research Council.

Professor Graham Schaffer may be contacted at [email protected]

This feature was first published in Powder Injection Moulding International Vol 2 No 2 September 2008.

Useful links……

PIM International

Powder Injection Moulding International is the only magazine dedicated to the global PIM industry, comprising the metal (MIM), ceramic (CIM) and carbide injection molding sectors

PIM Industry News

Discover the PIM Process

Features

Technical Papers

Subscribe

International PM Directory

The International Powder Metallurgy Directory (IPMD) is the leading directory of powder metallurgy (PM) parts producers and industry suppliers worldwide, with over 4700 listings

News from the PM Industry

Search 4,700 PM suppliers and producers

Global Market Review

PM Events

Technology reviews

 

In the latest issue of PM Review…

Download PDF

Extensive Powder Metallurgy industry news coverage, and the following exclusive deep-dive articles and reports:

  • Powder Metallurgy’s challenge: How does automotive’s reliance on model-based decision making impact our industry?
  • How to make metal powders. Part 4: Centrifugal and other special atomisation methods
  • Precision and energy efficiency in PM press technology: Insights from Ceramitec 2022
  • Historic traditions and new innovations: refractory metals and hard materials at the 20th Plansee Seminar
  • Tailoring a speciality alloy for Additive Manufacturing: From powder production to parameter optimisation
  • Understanding the compaction and sintering effects of four commonly used lubricants in Powder Metallurgy

The latest news from the world of metal powders, delivered to your inbox

Don't miss any new issue of PM Review, and get the latest industry news. Sign up to our weekly newsletter.

Sign up

From the industry…

Discover our magazine archive…

The free-to-access PM Review magazine archive offers unparalleled insight into the world of Powder Metallurgy from a commercial and technological perspective through:

  • Reports on visits to leading PM part manufacturers, metal powder manufacturers and industry suppliers
  • Articles on technology and application trends
  • Information on materials developments
  • Reviews of key technical presentations from the international conference circuit
  • International industry news

All past issues are available to download as free PDFs or view in your browser.

 

Browse the archive

 

Looking for PM production equipment, metal powders, R&D support and more?

Discover suppliers of these and more in our
advertisers’ index and buyer’s guide, available in the back of PM Review magazine.

  • Powders & materials
  • Powder process, classification & analysis
  • PM products
  • Atomisers & powder production technology
  • Compaction presses, tooling & ancillaries
  • Sintering equipment & ancillaries
  • Post-processing
  • Consulting & toll sintering
Download PDF
Share via
Copy link