The potential of powder metallurgy is only limited by one’s imagination…

Hoeganaes Corporation is a world leader in the development and production of metal powders.

Over 65 years, our commitment to innovative technologies spans critical applications from Automotive to Additive Manufacturing.

Hoeganaes Corporation has expanded our global footprint to meet our customers’ needs, with powder production facilities in North America, Europe and Asia.

Powder Metallurgy: Meeting the needs of future technologies

The development of new technologies, although a threat to some, can offer huge potential to innovative industries with the flexibility to take on the challenge. For the PM industry, one such opportunity lies in the development of fuel cell technology.

As environmental concerns change the way we harvest energy, the technologies we use must be efficient, stable and provide years of service. Researchers at Jülich GmbH and Plansee SE recently reported that a high-temperature solid oxide fuel cell, containing Powder Metallurgy interconnects, successfully completed a ten-year life-cycle test.

The ten-year programme has proved the durability of this technology and the reliability of PM components in demanding applications. Uses for this type of fuel cell include power supply systems for households or small businesses as well as large vehicles such as trucks, trains and ships.

In some cases, limitations in raw material supply can drive the development of alternative materials and technologies. Concerns regarding the supply of rare earth elements to the magnet sector are one example and in this issue of PM Review, Dr Sim Narasimhan reports on the development of new materials which could offer alternatives for this important sector.

Paul Whittaker
Editor, Powder Metallurgy Review
in this issue

47 High-performance permanent magnets: The influence of rare earths and the development of alternative materials
Rare earth permanent magnets dominate the higher performance magnetic devices market. However, concerns over the supply of raw materials are driving material scientists to explore alternative elements. Dr Sim Narasimhan reviews the developments and the challenges facing these alternative materials.

61 Optimising iron-based PM self-lubricating bearings: The influence of graphite
Sintered self-lubricating bearings are typically made from bronze alloys, however, for less demanding applications, iron-copper combinations offer a low-cost alternative. Matteo Zanon of Pometon SpA reviews the influence of graphite in the manufacture of iron based bearings.

69 Innovation drives success in the Japan Powder Metallurgy Association’s 2017 awards
The winners of this year’s JPMA PM component awards highlight the continuing developments being made to further expand the range of applications for PM technology.

75 EuroPM2017: Hot Isostatic Pressing for enhanced performance and demanding applications
A number of process developments in Hot Isostatic Pressing (HIP) that address the need for high performance components in demanding applications were identified in a technical session at the Euro PM2017 congress, recently held in Milan, Italy. Dr David Whittaker reviews three key papers from this session.

85 POWDERMET2017: Improved dimensional control in PM iron-copper-carbon materials
Iron-copper-carbon is one of the most widely used materials in PM component production thanks to its low cost and high mechanical and metallurgical properties. Papers presented at the POWDERMET2017 Conference, Las Vegas, considered options to improve dimensional control and limit post processing operations. Dr David Whittaker reviews a selection of these papers.

regular features

6 Industry news
97 Events guide
98 Advertisers’ index
Fuel cell with PM interconnects runs successfully for ten years

A planar solid fuel cell developed at the Jülich GmbH Research Centre, Germany, has been running and producing electricity successfully for ten years. The high-temperature fuel cell, which has been studied throughout as part of a lifetime test, was built using Powder Metallurgy interconnects from Plansee SE, Reutte, Austria.

The lifetime test was launched on August 6, 2007, and is intended to demonstrate the durability of the solid oxide fuel cells developed by Jülich. In order for their operation to be economically efficient, these have to run for between 40,000 and 80,000 hours, or 5 to 10 years. According to Jülich, no other fuel cell with ceramic cells has ever run for this long, and short lifetimes have in the past been regarded as the major flaw of this type of fuel cell. Plansee’s interconnects were manufactured from ITM, an iron-based Oxide-Dispersion Strengthened (ODS) alloy with a 26% chrome content and very small amounts of yttrium oxide (Y, O). An ODS alloy of this type can only be manufactured using PM techniques and is reported to offer crucial benefits in terms of SOFC high-temperature fuel cell applications. ITM withstands thermal and redox cycles for longer than other types of ferritic steels.

Over the fuel cell’s entire service life to date, the research centre team state that it has exhibited only a very low level of ageing, at approximately 0.6% per 1000 operating hours (Courtesy Plansee). Converted into electrical current in the cell, other fuels, such as natural gas, can also be converted and, according to other trials, may achieve higher levels of efficiency. Applications for this type of fuel cell include stationary power supply systems, such as for households or small businesses, but also for large vehicles such as trucks, trains and ships.

www.plansee.com
www.tz-juelich.de

Committed to deliver high-quality iron & steel powders

Rio Tinto Metal Powders (RTMP) is a registered ISO 9001, ISO 14001 & ISO/TS 16949 company and the only major powder producer in the world to manufacture iron powder from low residual ore. As a result, RTMP offers exceptional consistency in its full range of iron and steel powders.

RTMP uses a continuous improvement process to meet and exceed market standards. It’s numerous recognitions have contributed to RTMP becoming the first ferrous powder producer in the world to certify under ISO 9001 and ISO 14001.

RTMP was also the first ferrous powder manufacturer to meet the quality standards of ISO/TS 16949. Both RTMP’s plants in Canada and in China are registered to this standard.

RTMP iron & steel powders are a symbol of total quality management. We assure our customers that our powders will provide superior properties to meet the most challenging applications.

RTMP is a reliable supplier committed to total quality assurance.

© 2017 Inovar Communications Ltd

Powder Metallurgy Review | Winter 2017
Höganäs to upgrade and expand its Shanghai metal powder mixing facility

Höganäs AB has begun upgrades to its metal powder mixing facility in Shanghai, China. The company has announced that a state-of-the-art mixing station for advanced metal powder mixes will be opened in 2018. “Asia, and China in particular, are important markets for Höganäs,” stated Fredrik Emilson, Höganäs CEO. “With the upgraded mixing station we can supply our customers in the region with unique, consistent mixes in very short time.”

The upgrade of the mixing station in Shanghai aims to increase Höganäs’ capacity to both produce tailor made customer mixes and handle large, two ton flex bags. The project will also improve work environment, upgrade existing facilities and equipment and build a new warehouse and quality control lab. “Höganäs’ offering in mixes, especially bonded mixes, has grown immensely year on year in the past six years. Now we are preparing for growth in the years to come,” added Terry Chen, Operation & Supply Manager at Höganäs in Shanghai.

The ground-breaking ceremony was held in October. In an opening address, Richard Molin, Operations Manager APAC, stated, “We believe that Höganäs will be an even more attractive company for people in the neighborhood to come and work for. We hope that this important step into the future, with the state-of-the-art facility here in Qing-Pu, will show everyone that Höganäs continues to focus on Asia and especially on China.”

Sandvik reports continued growth and appoints new President for Sandvik Materials Technology

Sweden’s Sandvik AB has announced the results for its third quarter and the first nine months of 2017. According to the company, it has seen good overall growth for the quarter, with order intake increasing across all business areas. Group-wide revenues increased by 12% compared to Q3 2016, with operating profit rising by 28% compared to Q3 2016. During the quarter, with order intake increasing 9% to 3,045 million SEK (Q3 2016: 2,851 million SEK) and achieved an organic revenue increase of 3%. According to the company’s report, business momentum for all segments was strongest in Asia, which reported 14% growth. North America reported growth of 12%, while Europe saw sales growth of 9%.

Despite steady growth, Sandvik Materials Technology saw order intake increase 9% to 3,045 million SEK (Q3 2016: 2,851 million SEK) and achieved an organic revenue increase of 3%. According to the company’s report, business momentum for all segments was strongest in Asia, which reported 14% growth. North America reported growth of 12%, while Europe saw sales growth of 9%.

The company also reported that it has appointed Göran Björkman as President of Sandvik Materials Technology and member of the Sandvik Group Executive Management Team. Björkman succeeds Petra Einarsson who is leaving the company to join packaging specialist BillerudKorsnäs as its President and CEO. “Göran Björkman has with his extensive experience the right capabilities to lead Sandvik Materials Technology going forward. As we all know, this business area is experiencing a challenging situation. I am convinced that Göran Björkman will add the strategic, business oriented focus that the business area now requires,” added Rosengren. Björkman, age 51, has been with the company since 1990 with almost twenty years at the materials technology operations. He previously held the positions of Vice President Production at Sandvik Coromant and Vice President Production Strategy, Sandvik Machining Solutions. “I want to take the opportunity to express my gratitude to Petra Einarsson for her devoted contributions to Sandvik during almost thirty years and I wish her all the best in her new position as President and CEO for the packaging industry group BillerudKorsnäs,” added Rosengren.
Ames Lab receives funding to commercialise gas atomisation design

The US Department of Energy’s Ames Laboratory has received $392,000 in funding to commercialise a gas atomisation nozzle design used to produce metal powders for manufacturing. In addition, the laboratory will contribute in-kind matching funds of equal value for the project from private sector partner Ampal, Inc., a part of the United States Metal Powders group of companies.

According to Ames Laboratory, its gas atomisation method efficiently produces metal powders that are customisable, consistently sized and spherical, resulting in a smooth flow, optimal packing and improved quality of produced parts.

The funding is part of the DOE’s Office of Technology Transition's Technology Commercialisation Fund (TCTF), announced recently by US Secretary of Energy Rick Perry. The funding, totalling $19.7 million, will support fifty four projects across twelve National Laboratories involving more than thirty private sector partners, and is expected to help businesses move promising energy technologies from National Laboratories to the marketplace.

“We’ll be working with our industrial partner to adapt our experimental gas atomisation nozzle design to increase efficiency and control in their manufacturing process,” stated Emma White, Ames Laboratory metallurgist. “We hope that if we can demonstrate the advantages of our technology with this manufacturer, it will develop interest across the industry.”

www.ameslab.gov
www.science.energy.gov
www.usmetalpowders.com

New aluminium alloy update for MPIF Standard 35

The Metal Powder Industries Federation (MPIF) has released an addendum to the 2016 edition of MPIF Standard 35-SP, ‘Materials Standards for PM Structural Parts.’

The update includes mechanical property data, elongation and hardness values on two aluminium alloys – AC-2014-32-T8 and AC-2014-38-T8. The updated standard gives a Rockwell hardness of 75 for AC-2014-32-T8 and 83 for the AC-2014-38-T8. Because of their relative high strength in a range of temperatures and their overall mechanical properties, these Al alloys are often used in aerospace applications.

A copy of the standard can be seen online on the MPIF website and will be included in the next published edition of the standard document.

www.mpif.org

AAM showcases PM technology at Shanghai engineering conference

The SAE-China Congress and Exhibition (SAECCE) and the 19th Asia Pacific Automotive Engineering Congress combine product display and technical discussions into one event attended by China’s top automakers and supplier community.

This year American Axle & Manufacturing showcased a portfolio of driveline, metal forming, powertrain and casting technologies focused on increased efficiency and improved performance.

Held in Shanghai, more than 2,000 industry experts and more than 10,000 visitors attended the conference’s display area and technical sessions including paper presentations and panel discussions. AAM’s display included e-AAMTM Hybrid and Electric Driveline Systems, EcoTrac® disconnecting AWD technology, propshaft, vibration control systems, light and heavy-duty commercial vehicle axles, transmission technology and forged products.

AAM manufactures a range of powertrain components including Powder Metalurgy connecting rods.

AAM has eight facilities in China which engineer and manufacture driveline, powertrain and metal forming technologies for local customers. AAM continues to grow in China and recently transitioned key driveline system production to be near local customers.

www.aam.com

We build atomizing equipment for close-coupled and free fall gas atomization of Titanium • Inconel • Tool Steel • Aluminium and more

Toll material processing Powder • Castings • Refining of reactive and refractory metals using cold crucible, ceramic and graphite furnaces

Arcast Inc.
WWW.ARCASTINC.COM
SALES@ARCASTINC.COM

A SOLID LINE OF THINKING: SINTERING WITH A SOLID INFILTRANT

YOUR BRIGHT WIRE INFILTRATION SOLUTION.
1868 Corniche Drive
Zionsville, IN 46077
888-ULTRA-55
www.ultra-infiltrant.com
PRivest@Ultra-Infiltrant.com
Alpha Sintered Metals consolidates new acquisitions with company rebrand

Alpha Precision Group (APG), St Mary’s, Pennsylvania, USA, has announced the consolidation of its brands – Alpha Sintered Metals (ASM), Precision Compacted Components (PCC) and Precision Made Products (PMP) – to form Alpha Precision Group.

ASM manufactures Powder Metallurgy and metal injection moulded components for the automotive, small engine, commercial vehicle, agricultural equipment and recreational vehicle markets. This year, the company marks its 50th anniversary, with a primary manufacturing focus on products supporting increased fuel economy, improved emissions and enhanced engine performance.

In 2016, O2 Investment Partners acquired PCC and American Precision Group, which built up before 2017. As part of these acquisitions, APG Metal Injection Molding will take on the MIM operations of Alpha Sintered Metals and Precision Compacted Components.

According to APG, the rebranding effort includes the new brand identity, company logo, new building signage and a consolidated website currently under construction.

www.alphaprecisionpm.com

GKN Board removes Kevin Cummings as CEO Designate and appoints Anne Stevens as its Interim CEO

The Board of GKN plc has reversed its decision to appoint Kevin Cummings as CEO, which it first announced in September, 2017. According to the company, “the GKN Board has concluded that the next stage of GKN’s development is best delivered under alternative leadership.”

Following the announcement, Cummings left the board and GKN with immediate effect.

Anne Stevens, currently a non-executive director of the board, will assume the role of Interim Chief Executive from January 1, 2018, and remain in the post until a successor is appointed. As previously announced, Nigel Stein will continue as Chief Executive until retiring from the role on December 31, 2017. Stevens, formerly Chairman, CEO and President of Carpenter Technology Corp, has extensive experience across both the automotive and aerospace industries. Prior to joining Carpenter, she held a number of roles during a sixteen year career at Ford Motor Company, latterly as Chief Operating Officer for the Americas. She was appointed to the GKN Board in July 2016 and is also a non-executive director of Anglo American plc, Lockheed Martin Corporation and XL Group plc.

The appointment of Hans Büthker to the role of Chief Executive GKN Aerospace will be brought forward to take effect immediately, as opposed to on the formerly announced date of January 1, 2018. Büthker will work with the rest of the executive team to develop plans to improve margins and cash flow across the group.

www.gkn.com
Kobe Steel reports ‘improper conduct’ in PM steel powder data

Kobe Steel Ltd, headquartered in Tokyo, Japan, has issued a statement on what it calls ‘improper conduct’ in the company following the rewriting of inspection data relating to steel powder supplied to one of its customers. The report follows the announcement in early October, 2017, of investigations in response to the discovery of similar issues in the company’s Aluminum & Copper Business.

According to Kobe Steel, evidence of “improper rewriting of inspection data of a product outside the compact density agreed with the customer” was identified for “one type of steel powder to one customer”. The powder in question was produced at Kobe’s Takasago Works, Takasago, Japan.

Although an investigation being conducted by an external law firm is still incomplete, Kobe Steel stated, “As the steel powder outside the specifications is on the high-quality side, the effect on product performance is believed to be low.”

The problem is said to have been discovered through “self-inspections and emergency quality audits of the compliance status of contracts executed for products that Kobe Steel shipped over the past one year.”

In addition to the matters identified above, the company stated that it has uncovered issues in the production of sputtering target materials at Kobelco Research Institute, Inc’s Takasago Works site. In this instance, tests agreed with customers were not carried out and inspection data was rewritten with regard to products which fell outside agreed component values.

The investigation by an external law firm is ongoing, as well as a continuing internal investigation of the facts stated improper conduct.

www.kobelco.co.jp

Ceratizit acquires precision tool manufacturer Komet

Ceratizit Group, based in Besigheim, Germany, a manufacturer of high-precision tools for almost 180 years, has announced the acquisition of Komet Group, based in Bensheim, Germany, a manufacturer of high-precision tools for almost 180 years. The group now employs 1,150 and is represented by twenty-two global subsidiaries.

“This move lifts the close and long-standing partnership between the two companies to a new level,” explained Jacques Lannens, Chairman of the Executive Board, Ceratizit. “It opens up completely new prospects both for our customers and our employees.”

According to Bönsch, the Komet brand will now play a pivotal role in the group’s cutting tools strategy, from turning and milling to the complete machining of holes.

“The synergies in terms of technical expertise in substrate developing and coating technologies, cutting tools technologies and coating are substantial and represent significant added value for our customers,” added Lannens.

“The disruptive changes in the market environment pose enormous challenges for Komet,” added Dr Christof Bönsch, Komet CEO. “The acquisition by Ceratizit now opens up new opportunities for sustainable growth. The takeover sees the emergence of a new global player with superior technology expertise and broad market access.”

“Employees can look forward to a positive and attractive future,” Bönsch continued, “because, as a privately owned company, Ceratizit is keen to develop its sites in a sustainable manner. The implementation of the ‘Komet 2026’ strategy will be continued in order to ensure the safety of the jobs.”

In addition to playing a key role in Ceratizit’s cutting tools strategy, the company also reportedly offers “Digital Productivity Solutions” to the group, which could enable it to develop products in line with the demands of Industry 4.0.

According to Ceratizit, this acquisition is part of a continued growth strategy which has enabled it to double sales in the past ten years, while strengthening its position in core markets.

www.ceratizit.com

Höganäs opens permanent Indonesian office

Höganäs AB has announced the opening of a permanent office in Jakarta, Indonesia. The move is said to follow the establishment of several Indonesian plants by large automotive companies.

Margaretha Kho, Sales and Customer Manager at Höganás as of August 2017, will work from the Jakarta office having previously worked for other European industrial companies in the region.

“Höganäs is an exciting company, with a long history and a lot of experience”, stated Kho. “Indonesia is an exciting country with many segments where Höganäs can help develop businesses through technical expertise. I am very much looking forward to being Höganäs’s link to the local market.”

Ola Listrom, Höganäs’s Country Manager for Taiwan and South East Asia, stated, “We have to be in Indonesia on a permanent basis. We need to be part of, and understand, the local culture and the business climate so that we can serve the market in the best way possible.”

www.hoganas.com

DSH Technologies supplies support to a host of different industries including medical, aerospace, automotive, military and more, each with its own unique requirements, materials and challenges. We provide access to full sized production equipment, metallurgical assistance and on-site production services to existing clients and new prospects. Partnering with DSH helps you avoid countless pitfalls in the MIM parts manufacturing process, saving you time and money. With the help of DSH, see just how accurate ELNIK equipment is in delivering you quality and performance before you’ve made the investment. INNOVATION. EXPERIENCE. EXCELLENCE.

107 Commerce Road | Cedar Grove, NJ 07009 USA | +1 973.239.7792 | www.dshtech.com

© 2017 Inner Communications Ltd

Winter 2017 | Powder Metallurgy Review
Japan metal powder shipments see double-digit growth in first eight months 2017

The Japan Powder Metallurgy Association (JPMA) has reported that iron powder shipments, including exports, reached 74,728 tonnes in the eight months to August 2017, an increase of 14% compared with the same period last year. The trade association also reported that PM-grade copper-base powder shipments increased by 13.4% to 3,387 tonnes.

The growth in powder shipments reflected an 8% increase in domestic car production during the same period, with automakers reporting a total of 5,473 million units produced in the first eight months of 2017. The JPMA reported that of the 118,514 tonnes of iron powder shipments for PM in Japan in 2016, over 95% went into automotive applications, while the majority of copper-based powders went into PM bearings, with 79% destined for the automotive sector.

Sumitomo Electric Industries reports growth in hardmetals and structural PM components

Sumitomo Electric Industries Co Ltd (SEI), Itami, Osaka, Japan, reported a buoyant six month period to the end of September 2017, with an 11.2% increase in group sales to Yen 1,459 billion ($12.856 billion) compared with the same period in 2016. Group operating income increased by 39.6% to Yen 65.7 billion ($578.9 million).

SEI’s Industrial Materials & Others division is the third largest after its Automotive and Environment & Energy divisions and incorporates the production of cemented carbides (hardmetals), PM parts and bearings, PM magnets, plus W, Mo, heavy metal, thermal management materials, ceramics, plus diamond tools and hardmetals produced at the wholly owned A.L.M.T. subsidiary. The division saw a 23% increase in sales in the first six months to Yen 176.4 billion ($1.554 billion) compared with the same period last year.

Hardmetals (cemented carbide) sales grew by 14.6% to Yen 44.9 billion ($413 million). Sintered PM products increased by 32.6% to Yen 37 billion ($326 million), whilst sales at A.L.M.T. increased by 5.8% to Yen 20 billion ($175 million). SEI forecasts full-year sales for its Industrial Materials & Others division to increase by 11.8%.

North American Höganäs applies to join foreign trade zone program

It has been reported that North American Höganäs has become the first manufacturer to join Pennsylvania’s foreign trade zone program. Public notices published by local newspaper The Tribune-Democrat confirm that Höganäs has applied for its manufacturing facilities in Cambria, Somerset and Elk counties to be given subzone status.

Established in January 2014, the trade zone program allows participating companies to receive reduced or eliminated duty tariffs on imported material being used to produce other products.

Matthew Smith, Logistics Manager for Höganäs, reportedly stated that the subzone status will allow the company to reduce costs on imported material used to turn scrap metal into specialised iron powder used in manufacturing around the world.

Currently, there are around 400 workers at Höganäs facilities in Hollsopple, St Marys and Bridge Street in Johnstown’s Mosham section.

North American Höganäs has reported growth in metal powder shipments, with iron powder shipments increasing by 14% to 74,728 tonnes in the eight months to August 2017. The JPMA has also reported an 8% increase in domestic car production during the same period, with automakers reporting a total of 5,473 million units produced in the first eight months of 2017.

Sumitomo Electric Industries Co Ltd (SEI), Itami, Osaka, Japan, reported a buoyant six month period to the end of September 2017, with an 11.2% increase in group sales to Yen 1,459 billion ($12.856 billion) compared with the same period in 2016. Group operating income increased by 39.6% to Yen 65.7 billion ($578.9 million).

SEI’s Industrial Materials & Others division is the third largest after its Automotive and Environment & Energy divisions and incorporates the production of cemented carbides (hardmetals), PM parts and bearings, PM magnets, plus W, Mo, heavy metal, thermal management materials, ceramics, plus diamond tools and hardmetals produced at the wholly owned A.L.M.T. subsidiary. The division saw a 23% increase in sales in the first six months to Yen 176.4 billion ($1.554 billion) compared with the same period last year.

Hardmetals (cemented carbide) sales grew by 14.6% to Yen 44.9 billion ($413 million). Sintered PM products increased by 32.6% to Yen 37 billion ($326 million), whilst sales at A.L.M.T. increased by 5.8% to Yen 20 billion ($175 million). SEI forecasts full-year sales for its Industrial Materials & Others division to increase by 11.8%.
Element Six introduces new grade of optimised PCD for automotive industry

Element Six has announced the launch of CTB004, a new grade of polycrystalline diamond (PCD), said to be customised to meet the precision cutting demands of the automotive industry. Reportedly offering high-speed machining advantages, CTB004 delivers optimised workpiece surface finish in both boring and chassis applications.

The new grade, which joins Element Six’s existing product CMX850, is targeted at the cutting of aluminium alloys, where a high surface finish is required alongside higher wear resistance. CTB004 has a four-micron fine grain structure delivering a balance between tool performance and resistance to abrasion and chipping.

“Cutting-edge materials that offer considerable advantages to our customers is our constant focus,” stated Richard Townsend, Product Manager – PCD at Element Six. “PCD materials provide the end-user with unsurpassed levels of productivity and workpiece quality that meet the demands of very specific applications. The push in the automotive industry to make vehicles lighter and more efficient while retaining durability has meant that aluminium use by the major OEMs has significantly increased.”

The CTB004 grade also joins Element Six’s Aero-Dianamics™ CFRP workpiece tooling solutions, which allow tool designers to form entirely new PCD geometries with a large variety of profiles.

www.e6.com

Dates announced and Call for Papers issued for India’s PM18

The Powder Metallurgy Association of India (PMAI) has issued a Call for Papers for its PM18 International Conference on Powder Metallurgy and Particulate Materials & Exhibition.

The event, scheduled to take place February 21-23, 2018 at the CIDCO Exhibition Centre in Navi Mumbai, India, will once again bring together all topic technical programmes and an international trade exhibition. The PMAI has requested that abstracts of papers for oral presentations as well as posters should be submitted no later than January 31, 2018. The comprehensive technical programme will include a full range of topics.

www.pmai.in/pm18

PSI celebrates thirty years in gas atomisation technologies

In 2017, Phoenix Scientific Industries Ltd (PSI), Hailsham, East Sussex, UK, celebrates its thirty year anniversary. The company is best known for its activities in gas atomisation equipment for the production of metal powders for the then-emerging Hot Isostatic Pressing (HIP) industry. Since then, the company has continuously developed its technology in response to the evolving application areas for gas atomised metal powders, notably in the Metal Injection Moulding industry and more recently in metal Additive Manufacturing processes.

The company was founded by Bill and Jan Hopkins and backed by Lucius Cary of venture capital company Oxford Technology, and has grown from building small research machines for universities to supplying multi-million dollar production systems for large corporations. Today, the company has installed systems in twenty one countries on seven continents.

A sister company to PSI, Metal Powder and Process Ltd (MPP), was recently formed with the purpose of developing and producing novel metal powders for the then-emerging Hot Isostatic Pressing (HIP) industry. Since then, the company has continuously developed its technology in response to the evolving application areas for gas atomised metal powders, notably in the Metal Injection Moulding industry and more recently in metal Additive Manufacturing processes.

The company was founded by Bill and Jan Hopkins and backed by Lucius Cary of venture capital company Oxford Technology, and has grown from building small research machines for universities to supplying multi-million dollar production systems for large corporations. Today, the company has installed systems in twenty one countries on seven continents.

PSI builds a wide range of systems for atomising metal powders. The Hermiga gas atomiser shown here is from a product range that includes research and pilot systems as well as production capable units.

www.psimpl.co.uk

ALD Vacuum Technologies

High Tech is our Business

Superclean Spherical Metal Powder

EIGA – Electrode Induction-melting Inert Gas Atomization

www.temptab.com

Contact us today!
Oerlikon strengthens technology portfolio with multiple acquisitions

Oerlikon, Pfäffikon, Schwyz, Switzerland, has acquired Primateria AB in Sweden and signed an agreement to acquire the assets of DiaPac LLC and Diamond Recovery Services Inc (DRS) in the USA. According to the group, these acquisitions are aimed at adding promising technologies and expertise in the field of advanced materials and surface solutions, to reinforce and expand its business offering.

Primateria is a provider of surface engineering services in Sweden, specialising in pre- and post-treatment solutions for tool optimisation. With this acquisition, Oerlikon expects to strengthen its foothold in the gear cutting market and to provide greater expertise and a broader portfolio of surface treatments to its customers worldwide.

DiaPac LLC is an internationally recognised leader in providing high-performance powder metals, wear-resistant surface coatings and cemented carbides for use in oil & gas, mining, construction, agricultural and manufacturing operations. Diamond Recovery Services (DRS) specialises in providing hard materials and environmentally complementary reclamation services, applied across a broad spectrum of applications.

With these acquisitions, Oerlikon expects to gain strong complementary knowledge for the manufacturing, processing, application and recycling/reycling of advanced materials, especially tungsten carbide. It will also benefit from increased market access in the oil & gas, metal matrix composites and US powder metals industries.

Dr Roland Fischer, Oerlikon Group CEO, stated: “These acquisitions are proof points that we are successfully executing on our strategy for surface solutions and advanced materials. We target very specific companies, which are leaders in their fields, have proven market success with their technologies and services and thereby can bring to Oerlikon excellent value that complements our existing competencies. As we see a growing demand for surface solutions technologies in many of our end markets, we will continue to expand and improve our technology and service offering to meet the needs of our customers today and in the future.”

The acquired companies bring to Oerlikon Group a combined 2016 revenue of CHF 10 million and a combined workforce of forty employees. As part of the group, DiaPac, DRS and Primateria are expected to be able to leverage the global market reach, innovation competencies and financial power of Oerlikon to bring their products and services to the next level.

The purchase prices were not disclosed.

www.oerlikon.com

Schunk opens new customer centre in Austria

Schunk Group has opened a new customer centre in Bad Goisern, Austria, in an inauguration ceremony attended by company management, the board of directors and the Schunk workforce, as well as representatives from local politics, business and media. The new centre is the result of a reported €4 million investment, and replaces a former site which was active from 1947.

Bad Goisern is home to the group’s Automotive Business Unit headquarters, part of Schunk Carbon Technology. At the opening ceremony, Dr Klaus Löcker, Managing Director of Schunk Carbon Technology, stated, “Bad Goisern is important as a centre for the international automotive business of our Carbon Technology Division.”

“The investment emphasises Bad Goisern’s importance as a business location situated in the heart of the Salzkammergut region.”

The investment emphasises Bad Goisern’s importance as a centre for the international automotive business of our Carbon Technology Division.”

Schunk’s new Customer Centre in Bad Goisern, Austria (Courtesy Schunk)

www.schunk-carbon.com

A Global Supplier Of Non-Ferrous Metal Powders with a reputation for

- QUALITY
- FLEXIBILITY
- CUSTOMER SERVICE
- NEW PRODUCT DEVELOPMENT

Makin Metal Powders (UK) Ltd has achieved its current position as one of the leading Copper and Copper Alloy powder producers in Europe by supplying the powders that match customer specific requirements in the most cost effective manner on a consistent basis, batch after batch.

Makin Metal Powders (UK) Ltd

T: +44 (0)1706 717326
E: mmp@makin-metals.com

www.makin-metals.com
PM technology boosts energy savings for industrial furnaces

Sandvik Materials Technology (SMT) reports that Powder Metallurgy materials under its Kanthal brand have been used to boost the productivity of industrial heat treatment furnaces. Efficient heat treatment is a vital step in the production of a wide range of products, from integrated circuits for smartphones to solar cells and most steel- and aluminium-based products. For efficient heat treatment to be possible, industrial ovens have to cope with the extreme heat required for these processes, often up to 1,250°C.

“A common problem is that the construction components within heating systems deform over the course of time,” explained Bo Jönsson, technical specialist at Kanthal. “For a material to function properly at high temperatures, two essential properties are required: good form stability and oxidation resistance.”

“The types of material traditionally used in the construction of industrial furnaces are often nickel-based, which provides good form stability but limited oxidation resistance.” However, conventionally produced materials – based on iron, chromium and aluminium – have excellent oxidation properties but relatively low form stability.

In May 2017, SMT received the ‘William Haglund Medal’ to the Product Developer of the Year’ award for the development of two materials able to cope with extreme temperatures, which it called Kanthal APMT™ and Kanthal APMT™. “The Kanthal APM and Kanthal APMT materials combine uniquely high oxidation resistance and form stability.” Jönsson continued. “The key to successfully developing these properties was the use of Powder Metallurgy to obtain an optimum micro-structure in the materials.”

ORS offers CT Powder Analysis Services using 3D X-ray imaging

Object Research Systems (ORS), Montreal, Canada, is now offering CT Powder Analysis through its Product Testing Services. Using its proprietary software and 3D X-ray imaging, the company provides clients with full volumetric data and analysis of metal powders for R&D and quality assurance purposes.

According to ORS, laser diffraction and other conventional powder testing methods do not provide the same depth of analysis as CT scanning, which can reveal powder characteristics only visible through X-ray. After scanning, a 3D visualisation of the powder can be produced, with the option to add visual details and animation for presentations. By visualising powder structure in 3D, ORS states that it enables its clients to extract meaningful quantitative descriptions relating to size and spatial distribution, as well as accurate data on sphericity, particle aspect ratio, size and porosity.

The company also offers a Complete Scanning Schedule Plan Analysis, which can be used to determine the variability of powders from, for example, nominally identical batches. This is expected to enable companies to provide better quality control.

www.thesobjects.com
Leaders in PM industry, science and academia recognised at Euro PM2017

The Euro PM2017 Congress & Exhibition took place in Milan, Italy, October 1-5, 2017. Organised and sponsored by the EPMA, the event attracted over 1000 participants, including delegates, authors and exhibitors from forty-two countries. According to the EPMA, over two-hundred oral and poster presentations were given during the five-day event.

At the opening Plenary Session the EPMA presented its annual Distinguished Service Award and the first EPMA Fellowship Awards, a new award designed to recognise significant contributions to Powder Metallurgy from the scientific and academic community.

EPMA Distinguished Service Award

The award is presented in recognition of individuals who make an outstanding contribution to the European PM industry over a number of years. Recipients are selected by the EPMA Council and this year, the EPMA presented its Distinguished Service Award to Thomas Lambrecht, Dorst Technologies, Germany.

Lambrecht studied Chemical Engineering at Munich Technical University from 1978-1984, after which time he began as Project Engineer at a Munich-based company designing and realising ceramic plants globally. He joined Dorst Technologies in 1995 as a Sales Manager. Since 2000, he has been employed as the company’s Managing Director.

EPMA Fellowship Awards

The EPMA’s inaugural Fellowship Awards were presented to Professor Doctor Ingenieur Christoph Broeckmann, Professor Alberto Molinaro and Professor Doctor José Manuel Torralba.

Prof Dr-Ing Christoph Broeckmann (centre) received the EPMA Fellowship Award

Broeckmann began his career at Ruhr-University Bochum, Germany, studying Mechanical Engineering before going on to work at the Institute of Materials Science at Bochum for ten years. Shortly after receiving his PhD for a thesis on the fracture of carbide rich steels, he began work at Köppern GmbH & Co. KG, before being appointed Managing Director at Köppern Entwicklungs GmbH. In 2008, he joined RWTH Aachen University as a professor and, in 2009, was made Head of the Institute for Materials Application in Mechanical Engineering (IWMM). Molinaro gained his PhD in Metallurgical Engineering from the University of Trento, Italy, and teaches as a Professor at the University of Trento. He was made Honoris Causa PhD by the University Carlos III, Madrid, in 2016. He is Chairman of the EPMI, the European Powder Metallurgy Institute of the EPMA. At Euro PM2017, he served as Congress Chair alongside Ing. Matteo Federici. He was Chairman of the 2010 PM World Congress.

Torralba is the Director-General for Universities and Research of Madrid Regional Government. He has published more than 600 scientific papers and supervised twenty-six PhD theses and eighty Diploma theses. He has participated in more than seventy international scientific committees of International Conferences, being Chairman of seven of them and involved in thirty-five competitive projects.

EuroHM Lifetime Service Award

The EPMA’s working group for hardmetals presented a special Lifetime Service Award in the Hardmetal Industry to Kenneth J A Brookes, Eurling, FIMMM, CEng, of International Carbide Data. Brookes, whose sixty-plus year career began at Tungsten Electric Company in 1951, has published multiple books on hardmetals and consults globally on the hardmetal industry.

More information: chemical@gea.com

We know what makes Hard Metals

Meeting the highest standards for drying and powder quality

GEA spray drying plants unite innovation and experience to state-of-the-art process technology for the production of hard metals and advanced ceramics. We have pioneered this technology, and our expertise helps you to meet the highest standards of powder quality, including powder size distribution, residual moisture content, bulk density and particle morphology. At the same time, all GEA plants are designed to comply with the strictest requirements regarding efficiency, health and safety and environmental compliance.

More information: chemical@gea.com
Ford and Zotye establish JV to build electric vehicles in China

Ford Motor Company and Zotye Auto have announced plans to invest $5 billion RMB (approximately US $716 million) to manufacture a range of electric vehicles for the Chinese market. Following the signing of a 50:50 joint venture agreement, the two companies will establish Zotye Ford Automobile Co., Ltd. Zotye Ford plans to build a dedicated product research and development centre as well as its own sales and services network. A new manufacturing plant for the JV will be constructed in Zhejiang Province. The all-electric vehicles produced by the JV will be sold under a new Chinese brand.

“We are delighted to have signed this joint venture agreement with Zotye to form our third joint venture automotive company in China. Subject to regulatory approval, Zotye Ford will introduce a new brand family of small all-electric vehicles,” stated Peter Fleet, Ford Group Vice President and President, Ford Asia Pacific. “We will be exploring innovative vehicle connectivity and mobility service solutions for a new generation of young city-dwelling Chinese customers.”

Zotye Auto is the market leader in China’s all-electric small vehicle segment and sold more than 22,500 all-electric vehicles year-to-date through October 2017, representing a growth of over 14% year-over-year. The JV is said to benefit from Zotye’s expertise in designing and commercialising EVs in China and Ford’s global product development and technology capabilities.

This is an important day for Zotye as we partner with Ford to help advance the growth of the Chinese auto industry,” stated Ying Jianren, Chairman of Tech-New Group Ltd. and Board Director of Zotye Auto. “We will work closely together to help meet Chinese consumers’ growing demand for electric vehicles.”

Upon its establishment, the new JV will expand Ford’s footprint to explore new forms of connectivity and mobility service solutions. Ford will introduce a new brand family of small all-electric vehicles through this joint venture agreement with Zotye. Zotye Ford will develop a range of electric vehicles for the US market and will also be exploring innovative vehicle connectivity and mobility service solutions. The JV will work closely together to help meet Chinese consumers’ growing demand for electric vehicles.”

Ford and Zotye Auto have formed a JV to build electric cars in China

Mitsubishi Materials Corp reports PM business sales up in first half results

Mitsubishi Materials Corp. (MMC), headquartered in Tokyo, Japan, has reported group sales up 20.3% year-on-year for the six months to September 30, 2017, reaching Yen 7,254,450 billion ($6.393 billion). The company recorded an operating profit up 33.5% to Yen 99,530 billion ($348 million) in the period.

Sales in the group’s Advanced Materials & Tools division – which includes cemented carbide (hardmetal) tools, structural PM parts and PM bearings, high-performance alloy products and superalloys – increased by 7.1% to Yen 78.3 billion ($689.9 million) and operating profit was up 2.1% to Yen 6.8 billion.

The company stated that a combination of aggressive marketing and higher demand in Japan, Europe, USA and Southeast Asia saw increases in sales for cemented carbides, and sintered PM products also benefited thanks to the launch of new products and increased sales.

www.mmc.co.jp

Centorr Vacuum Industries offers detailed online furnace finder application

Centorr Vacuum Industries has updated its website for custom vacuum and controlled atmosphere furnaces. The new site now provides quick and easy searching of furnaces based on application or furnace type. Technical data sheets are now also listed for each of the 65 different furnace configurations the company offers in its line of laboratory and production furnaces. The new site includes:

- Furnace Finder feature to quickly select the best equipment for your needs
- A ‘Request for Quotation’ form to easily gather information for receiving a custom proposal
- Ability to be viewed in over 90 different languages
- Downloads for technical data sheets, articles and company press releases
- Links for spare parts, field service support, used furnaces, and toll lab testing.

www.centorr.com

Acrawax® C Lubricant

Setting the standard in the metal powder industry, Acrawax® C Lubricant is a clean-burning, metal free lubricant that does not generate metallic or corrosive byproducts. Acrawax® C Lubricant is combustible, leaving no residue on sintered parts.

Acrawax® C Lubricant Offers:
- Precise particle size control
- Free flowing powder mixes
- Low die wear and easy part removal from the die
- Reduced part distortion
- Variety of custom particle sizes

To submit news to PM Review please contact Paul Whittaker: paul@inovar-communications.com

Contact us at:
E: functional.chemicals@lonza.com
T: + 1 201 316 9200 www.lonza.com

Setting the standard in the metal powder industry, Acrawax® C Lubricant is a clean-burning, metal free lubricant that does not generate metallic or corrosive byproducts. Acrawax® C Lubricant is combustible, leaving no residue on sintered parts.

Acrawax® C Lubricant Offers:
- Precise particle size control
- Free flowing powder mixes
- Low die wear and easy part removal from the die
- Reduced part distortion
- Variety of custom particle sizes

To submit news to PM Review please contact Paul Whittaker: paul@inovar-communications.com

Contact us at:
E: functional.chemicals@lonza.com
T: + 1 201 316 9200 www.lonza.com
MPIF announces its 2017 Outstanding Technical Paper award

The Metal Powder Industries Federation (MPIF) has announced that the 2017 Howard I Sanderow Outstanding Technical Paper Award has now been selected from presentations made at its POWDERMET2017 conference held in Las Vegas, USA, June 13-16, 2017. The winning paper, titled ‘Deformation Processed Al—Al, Ca Nano-filamentary Composite Conductors’, is by Charles Czahor, Trevor Riedemann, Alan Russell and Iver Anderson, FAPMI, Ames Laboratory, Iowa State University, USA. The Howard I Sanderow Outstanding Technical Paper Award (renamed in 2009), was established in 1993 to recognise authors of manuscripts for excellence in scientific and technical written communications from those papers presented and submitted for publication from the annual technical conference organised by the MPIF and APMI International. Its aim is to enhance the quality of technology transfer in PM literature by increasing the professional level of papers submitted for the annual technical conference and to enhance and promote the science and technology which is fundamental to Powder Metallurgy products, processes, and materials.

Magna forms joint venture for electric-drive powertrain production in China

Global Automotive supplier Magna International Inc., Aurora, Ontario, Canada, as entered into a joint venture agreement with SAIC Motor subsidiary Huayu Automotive Systems Co., Ltd (HASCO), Shanghai, China. The JV will initially be focused on the production of Magna’s electric-drive powertrain system for the Chinese market. Both partners report that they will give the JV full support to develop localised core competencies in terms of market development, R&D, advanced manufacturing and key parts supply such as gearboxes, inverter components and e-motors. Magna brings to the JV ten years of experience as a developer and manufacturer of electrified power-train including e-motors, gearboxes, inverters and control software. 

“The new-energy vehicle (NEV) market will continue to grow at a rapid speed in China,” stated Chen Zhixin, President of SAIC Motor and Vice Chairman of HASCO. “With this trend, SAIC Motor is developing the New Four Modernisation strategy focusing on car electrification, connectivity, intelligence and sharing economy. The establishment of the JV, a strong combination of HASCO and Magna’s strength to initiate cooperation in NEV electrified powertrain systems, has been a milestone for HASCO to develop its core competencies in the field of key new-energy-related components, as well as a critical measure to strengthen the New Four Modernisation strategy for SAIC.”

“China is the number-one growth market in the world, and they have been clear about their intended leadership in bringing hybrid and electric vehicles to market,” added Don Walker, Magna CEO. “Combining strengths with HASCO helps position Magna and the joint venture for future growth and success.”

In 2009, Magna announced a vehicle-development partnership with Ford Motor Company to introduce a zero-emission lithium-ion battery electric vehicle (BEV) – the Ford Focus BEV, which entered the market in 2011. Magna was responsible for providing the electric modernisation strategy focusing on car electrification, connectivity, intelligence and sharing economy. The establishment of the JV, a strong combination of HASCO and Magna’s strength to initiate cooperation in NEV electrified powertrain systems, has been a milestone for HASCO to develop its core competencies in the field of key new-energy-related components, as well as a critical measure to strengthen the New Four Modernisation strategy for SAIC. 

China’s electric-drive powertrain system will now be produced for the Chinese market (Courtesy Magna International)

Magna’s electric-drive powertrain system will now be produced for the Chinese market (Courtesy Magna International) also played a role in engineering the vehicle to integrate the electric propulsion system and other new systems into the vehicle architecture. Since 2012, Magna has also supplied Volvo with the electrically front-driven system (eRAD) featured on the Volvo V60 and S60 plug-in hybrid models. Magna’s eRAD system complements a traditional gas- or diesel-engine front-wheel-drive powertrain with an independent electric powertrain to power the rear wheels and offers multiple hybrid driving modes while adding four-wheel-drive capability.

www.magna.com
First plant in Europe to produce aviation-grade titanium by recycling

A new plant in Saint-Georges-de-Mons, France, will be the first in Europe to produce aviation-grade titanium by recycling. The EcoTitanium project makes alloys from titanium solid scrap and chips collected from the major aircraft makers and their subcontractors, and is said to provide Europe with a titanium supply source which is independent of the major global producers.

The €48 million project has three shareholders: UKAD (43.5%), a joint venture by Aubert & Duval and UKTMP International, ADIEM (41.3%) under the Investissements d’Avenir programme and Crédit Agricole Centre France (15.2%) through its investment subsidiary CACF Développement. The EcoTitanium site was inaugurated during a recent ceremony attended by Benjamn Griveaux, French Secretary of State for Economy and Finance, and Christel Bories, Chairman & CEO of the ERAMET Group.

“ERAMET’s recycling route will prevent the emission of 100,000 tons of CO₂ by consuming four times less power than the conventional, ore-based production supply chain. To support the creation of this environmentally responsible stream in Europe, the European Investment Bank (EIB) granted a €30 million loan for EcoTitanium funding,” Denis Hugelmann, CEO in charge of the Alloys Division, ERAMET and Chairman of EcoTitanium, stated.

At full capacity, EcoTitanium will produce several thousand tons of titanium alloy ingot per year to meet high growth in demand for titanium on aviation markets. Titanium and its alloys provide this industry with valuable properties: lightness (64% lighter than steel), excellent corrosion resistance and advanced mechanical characteristics.

It is said that EcoTitanium’s recycling route will prevent the emission of 100,000 tons of CO₂ by consuming four times less power than the conventional, ore-based production supply chain. To support the creation of this environmentally responsible stream in Europe, the European Investment Bank (EIB) granted a €30 million loan for EcoTitanium funding.

Alan Lawley passes away aged 84

Alan Lawley, Emeritus Professor, Drexel University, Philadelphia, USA, passed way on October 17, 2017, at the age of 84. As a long time friend and supporter of the Powder Metallurgy industry, Lawley made significant contributions to research and development in PM and particulate materials, and guided the professional development of undergraduates and postgraduate students, many of whom work in the industry today.

Lawley received BSc, Physical Metallurgy and PhD, Metallurgy degrees from the University of Birmingham, UK, after which he went on to work at the University of Pennsylvania’s School of Metallurgical Engineering as Post-Doctoral Fellow and at the Franklin Institute’s Solid State Research Laboratory.

He joined Drexel University in 1968, where he initiated a PM programme, and over the years his PM teachings, research and consulting activities impacted the academic world, industry and national laboratories, as well as federal government and state agencies.

While at Drexel, he was appointed Department Head/ Materials Engineering and made A.W. Grovesen Professor of Metallurgy. Hoeganaes Corporation, Cinnaminson, New Jersey, USA, endowed a professorship in PM at Drexel where two dedicated PM laboratories were established. Lawley published over 300 articles in archival journals, conference proceedings and books — more than 200 of which embrace PM and particulate materials.

Lawley was named Editor-in-Chief of APMI International’s International Journal of Powder Metallurgy in 1985 and served in this capacity until 2015. He was co-chairman of the 1993 International Conference on Powder Metallurgy & Particulate Materials (Nashville, USA), co-chaired the MPIF/APMI PM2008 World Congress (Washington, D.C., USA) and was a long-time member of the MPIF’s Technical Board. A recipient of numerous professional and societal awards, Lawley was among the first class of Fellows of APMI International (1998). Additionally, he served on APMI’s Panel of Fellows, Awards Committee, and Publications Committee. He received the MPIF Distinguished Service Award in 1991 and the MPIF Kempton H. Roll PM Lifetime Achievement Award in 2012.

EMBELUBE®

Lubricants for powder compaction

At eMBe we have the products and services to help you “shape up” your metal or ceramic powders, from lubricants to poreformers and products for MIM or CIM.

Develop your individual products with us by using our in-house laboratory and extensive experience as one of Europe’s leading PM additive suppliers.

Our services focus on product development and product innovation to continuously meet our customers’ evolving needs worldwide.

www.embe-products.com
GKN launches UK Innovation Centre for state-of-the-art vehicle technologies

GKN plc has opened a new UK Innovation Centre for its automotive division, which will focus on developing state-of-the-art vehicle technologies and systems. The centre, in Abingdon, Oxfordshire, UK, will make use of GKN group’s expertise in electrified drivelines through lightweight structures, composite materials and Additive Manufacturing to create a range of new technologies for next-generation vehicles.

Central to GKN’s recently-announced Official Partnership with the Panasonic Jaguar Racing Formula E team, the UK Innovation Centre will take the lead on delivering the group’s new components and technologies for the Jaguar Formula E electric race car. GKN has already delivered itsfirst components for the I-TYPE 2 in the form of custom-built fluid ports made from laser-sintered steel.

“Our new UK Innovation Centre will develop an array of next-generation technologies that will deliver significant benefits to electric vehicle, motorsport and off-highway applications,” said Phil Swash, GKN Driveline CEO. “For electrified systems in particular, GKN’s expertise will help automakers to develop lighter, quieter and more efficient vehicles. No other company can apply aerospace experience to automotive applications in the same way as GKN, unlocking exciting opportunities for Additive Manufacturing and composites.”

At the launch of the new centre, GKN displayed a range of its automotive technologies, including its two-speed TorqueShift powertrains. GKN stated that it has developed the only two-speed eTransmission currently in production – for the BMW i8 hybrid supercar – and revealed the world’s first fully-electric drive system with two-speed gearing and Twinster torque-vectoring technology at the Frankfurt Motor Show – the eTwinsterX.

At the UK Innovation Centre, GKN will work to develop a new TorqueShift system for electric vehicles. The company stated that two-speed systems can deliver more ‘miles per kilowatt’ than conventional eDrive systems, but GKN is focused on developing a ‘dual-clutch feel’ experience for electric car drivers. GKN also displayed a range of electric motors and flywheels. The UK Innovation Centre is now developing a new prototype energy storage unit, which will have a significantly larger capacity at lower cost than its previous-generation flywheel systems. This new flywheel technology has been designed specifically for commercial vehicles and off-highway applications in mind, delivering useful electric-driving capability without the higher cost of a plug-in hybrid or fully-electric system.

Dr W Brian James receives ASTM Frank W Reinhart Award

Dr W Brian James, Ph.D., retired, has received the Frank W Reinhart Award from the ASTM International Committee on Metal Powders and Metal Powder Products. James, who joined ASTM in 1964, was honoured for his contributions to the standardisation of terminology for the metal powder industry.

According to ASTM International, the award recognises his leadership and commitment to developing consistent and coherent terms for the committee. James has previously received the Award of Merit, the Distinguished Service Award, and two Awards of Appreciation from the committee.

Prior to his retirement, James served as Manager of International Technical Service for Hoeganaes Corporation, as a product development engineer for GKN Technology, as a development engineer for Round Oak Steel Works, among other roles. He holds both a Bachelor’s and Doctorate degree in metallurgy from the University of Manchester’s Institute of Science and Technology. In addition to ASTM International, James is a member of the American Powder Metallurgy Institute, the Institute of Materials, Minerals and Mining, the European Powder Metallurgy Association and the American Society for Metals.

www.astm.org

Dr W Brian James, Ph.D., received the Frank W Reinhart Award from ASTM International for his contributions to the standardisation of terminology for the metal powder industry.

To submit news to PM Review, please contact Paul Whittaker: paul@inovar-communications.com

www.inovar-communications.com

Submitting news...

To submit news to PM Review, please contact Paul Whittaker: paul@inovar-communications.com

www.inovar-communications.com
Paper submissions now open for Euro PM2018

The EPMA has issued a Call for Papers for Euro PM2018, the association’s annual Powder Metallurgy congress and exhibition, Bilbao, Spain, October 14-18, 2018. According to the EPMA, Euro PM2018 is set to feature a world-class technical programme as well as a 5000m² exhibition, showcasing the latest developments from the global PM Supply Chain.

This year’s Euro PM2017 was reportedly attended by over 1000 participants. The Euro PM2019 Congress and Exhibition, along with social events such as the welcome reception and congress dinner, is expected to provide excellent networking opportunities within the PM industry.

The conference programme of plenary, keynote, oral and poster presentations will focus on all aspects of Powder Metallurgy. Abstracts can be submitted on the following topics:

- Additive Manufacturing
- Applications for current and future PM
- Full density and alternative consolidation
- Hardmetals, hard materials and diamond tooling cermets
- Hot Isostatic Pressing
- Modelling and simulation
- Powder Injection Moulding
- Powder manufacturing and processing
- PM functional materials
- PM lightweight and porous materials
- PM magnetic materials
- PM non-ferrous and special materials
- Powder pressing
- Secondary & finishing operations

Euro PM2018 will take place in Bilbao, Spain

All abstracts should be submitted using the EPMA’s online submission form by no later than January 24, 2018. Abstracts must be between 100-150 words in length and give sufficient information to allow the Technical Programme Committee to evaluate the proposed presentation.

www.europm2018.com

Powder Piloting Service for powder-based materials and components

VTT Technical Research Centre of Finland Ltd (VTT), Tampere, Finland, a facility specialising in powder-based materials technology, now offers a Powder Piloting Service for the design and pilot scale processing of powder-based materials and components. The service is said to provide users with an easy way to check the feasibility of ideas and innovations in a confidential setting, with large investments in machinery, and covers the whole production chain from raw material synthesis to component performance testing.

The centre serves clients in the private and public sectors, both domestically and internationally, and has over 75 years’ experience supporting client growth with top-level research and science-based results.

The organisation’s Powder Piloting Service is focused on the key areas of:

- Coatings
  - Cost efficient solutions against wear, corrosion and high temperatures
  - Tailoring of material properties to fulfil performance criteria for harsh operating environments
- Components
  - High performance components using cost-efficient and sustainable manufacturing
  - Tailoring of components to meet high demands and standards
  - Powder based additives
  - Graded or locally reinforced structures
  - Structures with added functionality such as integrated catalytic or electro-magnetic properties

The centre serves clients in the private and public sectors, both domestically and internationally, and has over 75 years’ experience supporting client growth with top-level research and science-based results.

GF Machining Solutions

System 3R

Tooling for Powder Compacting Technologies

Simple, quick & precise!
- Simple, quick set-up
- High accuracy
- Low scrap rate
- Maximal machine utilization
- Increased productivity

Punches and dies directly from the Tool shop ...
... into the Press

GF Machining Solutions, System 3R International AB, Söderängsgatan 1, SE-162 38 VÄLLINGBY, tel +46 (0)8 620 20 00, e-mail: info.system3r@georgfischer.com, www.system3r.com

© 2017 Inovar Communications Ltd
Powder Metallurgy Review       Winter 2017

© 2017 Inovar Communications Ltd
Winter 2017       Powder Metallurgy Review
EPMA rewards PM theses, keynotes and poster presentations

During the opening Plenary Session of the Euro PM2017 Congress & Exhibition held in Milan, Italy, the EPMA announced the winners of its PM Thesis Competition as well as recipients of the conference Keynote Awards.

Organised and sponsored by the EPMA, the event took place October 1-5, 2017 at the MiCo Convention centre in Milan. According to the EPMA, over two-hundred oral and poster presentations were given during the five-day event.

PM Thesis Competition
Sponsored by Höganas AB, Sweden, the EPMA Powder Metallurgy Thesis Competition is open to any students studying Powder Metallurgy within the EU in two categories – PhD and Masters.

According to the EPMA, the aim of the competition is to develop interest in and promote Powder Metallurgy among young scientists at European academic institutions and to encourage research. Winners of the awards receive financial prizes and have the opportunity to present their work at the EPMA conference and receive a plaque from the EPMA President.

In 2017, the winners of the PM Thesis Competition were:
- Doctorate category – Dr Bey Vrancken, ‘Study of Residual Stresses in Selective Laser Melting’, KU Leuven, Belgium
- Masters category – Dipl-Ing Silvia Baselli, ‘Shrinkage Kinetics Model of Uniaxial Cold Compact Green Iron’, University of Trento, Italy

Keynote Awards
Four Keynote Paper Awards were given to those papers selected as having the highest merit. Each received an extended thirty-minute slot for their presentation at the beginning of the relevant session during Euro PM2017. Their papers were also published in the journal Powder Metallurgy, which sponsored a €250 prize for each of the selected authors.
- Dipl-Ing Julia Ureña, ‘Role of Beta-stabilizer Elements in Microstructure and Mechanical Properties Evolution of PM Modified Ti Surfaces Designed for Biomedical Applications’, University Carlos III Of Madrid, Spain
- Dr Torsten E M Staab, ‘Sintering Iron And Steel: Are There Indications For Defect-Activated Sintering?’, Fraunhofer ISC Wuerzburg, Germany
- Prof Dr Luis Llanes, ‘Implementation of Advanced Characterization Techniques for Assessment of Grinding Effects on the Surface Integrity of WC-Co Cemented Carbides’, Universitat Politècnica Catalunya, Spain
- Dr Gian Filippo Bocchini, ‘Can Industrial Standards Disregard Thermodynamics And Material Science?’, PM Consultant, Italy

Peter Brewin Poster Award
The EPMA’s Peter Brewin Poster Award was introduced in 2014 to recognise the contribution made by poster authors to the EPMA’s annual Euro PM Congress.

This year’s Poster Award was presented during a special poster session on Monday October 2. The winner was announced as:
- Dipl-Ing Wolfgang Limberg, ‘Enhancement of Fatigue-Properties of MIM-processed Ti-6Al-4V by Addition of Yttrium and Characterisation by In Situ X-ray Scattering’, Helmholtz-Zentrum Geesthacht, Germany

www.epma.com

Prof Kim Vannmeensel (left) collected the PM Thesis Competition Doctorate award on behalf of Dr Bey Vrancken and Dipl-Ing Silvia Baselli (left) received the PM Thesis Competition Masters award.

The EPMA presented Keynote Paper Awards to (L-R) Dr Gian Filippo Bocchini, Dipl-Ing Julia Ureña, Dr Torsten E M Staab and Dr-Ing José Manuel Torralba (on behalf of Prof Dr Luis Llanes)
Sintered steel chain sprockets are extensively used in automotive engine valve mechanisms. Their design and high density in the teeth provides for a combination of high contact fatigue strength at the tooth surfaces and a significant reduction in engine noise during operation of silent chains even at high revolutions.

Hitachi Chemical Co. Ltd of Tokyo, Japan, has been producing silent chain sprockets for a number of years using the tooth flank form rolling process to achieve the required high density (7.5 g/cm³) by removing residual porosity on the surface layer of the sprocket’s teeth. However, increasing competition from other manufacturing methods and the need to reduce costs and improve productivity has resulted in the company developing a new, alternative manufacturing process to achieve high density and fatigue strength in the chain sprockets.

Writing in Hitachi Chemical Technical Report, No. 59, 2017, Satoshi Onodera stated that the company has developed a modified die wall lubrication compaction process where the chain sprockets can be compacted to the desired high density by: (a) reducing the volume of pressing lubricant normally added to steel powder in conventional die compaction, and (b) using a die which is uniformly coated with a liquid lubricating film.

This involved developing a new lubricant containing mineral oil added to a solid lubricant and an extreme pressure agent to provide the excellent mould release capability during die wall lubrication compaction at pressures ranging from 400-1500 MPa. As can be seen in the figure, lubricant is supplied through the interior of the die and is also applied to the internal wall and sides of each die element during the compaction sequence from mould release position to the powder filling position.

Onodera stated that this system allows for the compaction of high density PM parts at much greater compacting speeds. Fig. 3 shows a high density sintered sprocket for silent chain made by the enhanced die wall lubrication compaction process using the new liquid coating. This PM component has a number of weight reducing holes requiring the use of multi-stage punch forming, and the technology developed has ensured that a uniform lubricant film is applied over all tooling surfaces.

www.hitachi-chem.co.jp
PM Summer School 2018 heads to Vienna

The European Powder Metallurgy Association (EPMIA) has announced that its next Powder Metallurgy Summer School will take place in Vienna, Austria, July 7-9, 2018. The popular course is open to young scientists, designers and engineers looking to gain a broader knowledge and understanding of the Powder Metallurgy process and applications.

The five-day residential event consists of a range of lectures given by PM experts drawn from both industry and academia. Topics to be covered will include the manufacture of metal powders, powder compaction, MIM, modelling, sintering, Hot Isostatic Pressing and Additive Manufacturing. Participants will be able to discuss and solve problems as well as get hands-on experience of various PM processes.

The Summer School is designed for young graduate designers, engineers and scientists from disciplines such as materials science, design, engineering, manufacturing or metallurgy. Graduates under 30 and who have obtained their degree from a European institution are eligible to apply. Registration to the Summer School is expected to open in early 2018.

www.epma.com/pm-summer-schools

Organisers report success of Spanish and Iberoamerican PM conferences

The Universidad de Castilla-La Mancha, Universidad Politécnica de Cataluña and the Institute of Ceramics and Glass have reported a successful 6th Spanish National Powder Metallurgy Conference and 1st Iberoamerican Powder Metallurgy Conference.

The conferences took place in Ciudad Real, Spain, June 7-9, 2017, and reportedly brought together more than 140 researchers from eleven countries. According to the organisers, around twenty PM companies attended the conferences’ “industry session”, as well as a number of industry associations.

In addition to plenary presentations from Dr Frank Petzoldt, Dr Elena Gordo, Dr Sebastián Díaz de la Torre and Dr Paolo Colombo, the conferences saw eighty presentations given across fourteen sessions. A further twenty-four short presentations were given during a poster session. During these sessions, attendees from both academic and industrial fields presented their latest activities and innovations.

An exhibition titled ‘Particles in your Life’ ran alongside the conference schedule, developed in order to make PM technology accessible to younger people through a series of guided visits from high school students.

www.vicnp.es

Kymera International formed from rebranding of powder businesses

Kymera International, the name by which ACuPowder, ECKA Granules and SCM Metal Products are collectively known, recently underwent a rebrand to help unify the three companies under a single name. Barton White, Kymera CEO, talked to PM Review about the origin of and reasoning behind the rebrand.

“We did not want to lose the extremely well-recognised names of ACuPowder, ECKA and SCM that for years had been synonymous with providing high-quality materials; however, we also felt that it was time for all to become one,” explained White. “The goal was to remove any ambiguity in the market as to the relationship between the three brands and also eliminate the internal ‘we/him’ by becoming ‘we’! After weighing all of the positives and negatives it was decided to move forward with the rebranding but also work to preserve the current brand names.”

“Our goal was to pick a name that actually had a meaning that fit with our desire to combine the three brands,” stated White. “The name would have to be unique enough that it could be copyrighted and also have a domain name that was not taken. We also needed to be sure that the chosen name and logo would not be offensive to people across different cultures... not easy!”

The Chimera of Greek mythology is a creature composed of vital parts from three different animals – a lion’s head, a ram’s body and a serpent’s tail. According to White, this made it a perfect fit for the organisation. “The combination of the three animals makes the hybrid creature more powerful than its individual pieces.”

“The problem was that there were many companies either directly named Chimera or where the spelling was very close, and so we decided that it was not unique enough. So we played with the name to make it more unique, as well as easier to pronounce.” Kymera was the final result, and a logo – depicting a lion, a ram and a serpent – was designed to match.

ACuPowder, ECKA Granules and SCM Metal Products’ plant locations will all now run in conjunction with Kymera International. For the foreseeable future, however, Kymera International will have no legal status and all of the Group’s companies will continue to use their respective product labelling and banking for invoicing and payments.

“Over time we expect that people will become more familiar with Kymera International and that it will develop its own excellent brand identity,” stated White.

www.kymerainternational.com
Refractory metals for particle producing targets at CERN

Intense and high-energy proton beams are impacted onto fixed targets made of refractory metals to produce secondary beams across the CERN accelerator complex. The interaction of a proton beam with the atoms and nuclei of these target materials produces extremely high and fast depositions of energy with a subsequent rapid rise of temperature, thermal and mechanical load.

In a paper presented at the 2017 Plansee Seminar, held in Reutte, Austria, May 29–June 2, 2017, Claudio Torregrosa and colleagues of the Engineering (EN) Department, Sources Targets and Interactions (STI) Group at the CERN accelerator complex in Genova, Switzerland, reported on the upgrades to existing target facilities underway at CERN, as well as the design of new target devices using refractory metals. Torregrosa stated that the design of new target devices will require significant R&D activities on the behaviour of the different refractory metals of interest exposed to realistic material operational conditions. The target devices include the Antiproton Decelerator Target (AD-Target), the Beam Dump Facility (BDF) and the n_TOF neutron production spallation target facility. The authors stated that the AD-Target is the only antiproton production target currently in operation in the world. Its current design, shown in Fig. 1, dates from the late 1980s and consists of a water-cooled Ti-alloy module. Inside this assembly, a graphite matrix contains the target core, which comprises a 3 mm diameter, 55 mm length iridium rod. A new design of the target is being pursued at CERN for future operations which, among other changes, may include the selection of a different target core material and geometry configuration.

Antiproton production is said to require a very compact target in order to be as close as possible to a punctual source and to reduce antiproton reabsorption in the material surrounding the core. Iridium is the current core material as it is the second most stable and densest element, although other refractory metals such as tantalum are strong candidates in the new design. The potential material should be as dense as possible, have a very high melting point (above 2000°C) and possess a high resistance to tensile pressures and spalling, even at high temperatures. Fig. 2 shows the results of some refractory metals (Ir, TZM, W and Ta) exposed to direct impact of proton beams during the HRMT27 experiment. All the targets except Ta showed a high degree of internal and external cracking. The Beam Dump Facility target is a production target for the Search for Hidden Particles (SHIP) experiment currently in the design phase. The proposed target core design comprises several blocks of pure tungsten and TZM (an Mo alloy containing 0.5% Ti, 0.8% Zr, 0.02% C) having a square cross-section of 30 x 30 cm² and variable thicknesses, for a total effective target length of around 130 cm (Fig. 3). TZM is chosen because of its higher strength, better creep resistance and higher recrystallisation temperature compared to pure Mo. Due to the high temperatures generated by the beam power delivered on the target, a high-speed water-cooling system flowing around the TZM and W blocks is foreseen in the design. However, the high-speed water in contact with the pure tungsten and TZM blocks could induce undesired corrosion–erosion effects, and the target core blocks are therefore clad with Ta and Ta-W alloys using Hot Isostatic Pressing (HIP). Ta and Ta-W alloys were selected as the cladding material due to its high thermal and mechanical load.
Tungsten fibre-reinforced tungsten targeted for fusion reactors

Tungsten, which has the highest melting point of all elements, is considered the main candidate material for the first wall of the plasma vessel in fusion reactors. This is because of its reliable resistance to the harsh operating conditions in the long duty-cycles in these reactors caused by transient heat loading, thermal fatigue, neutron irradiation and erosion. However, whilst tungsten meets the demands of high strength, plasma compatibility due to its low hydrogen retention, low erosion rates and acceptable activation under neutron radiation, the metal has low toughness when handled after neutron irradiation and erosion.

To improve the toughness of tungsten, researchers from the Technical University München, reported in a paper presented at the 2017 Plansee Seminar held in Reutte, Austria, May 29–June 2, on research carried out within the framework of the EURORision Consortium, whereby the inherently brittle tungsten is reinforced with W-fibres to increase its toughness. The Wf/W samples are processed by Hot Isostatic Pressing (HIPing), which was introduced as an alternative to HIPing, which enables the manufacturing of large-sized parts in shorter processing times.

The authors stated that tungsten-fibre-reinforced tungsten (Wf/W) enables extrinsic toughening of inherently brittle tungsten materials by the introduction of energy dissipation mechanisms similar to ceramic/matrix composites. These mechanisms, for example, the pull-out of the fibres or crack deflection at the tailored fibre-matrix, lead to a reduction of stress peaks at crack tips and thus significantly improve the resistance of tungsten against crack propagation.

In their work on HIPing of Wf/W samples, the researchers used two W powders having a mean particle size of \( d_{50} = 8.7 \mu m \) and \( d_{50} = 8.8 \mu m \) respectively. The W powders were die compacted at 110 MPa and 195 MPa to produce tablets having a diameter of 19 mm and height in the range 4-5 mm, with green densities of approximately 51.5% and 58%. Four pellets of the same green density were filled into a tantalum (Ta) capsule with a single tungsten fibre (wire) placed between adjacent tablets. The capsules were closed with a Ta lid and sealed by electron beam welding under vacuum. The W fibres used had a diameter of 150 µm and were produced by hot drawing. The fibres were coated with an Er\(_2\)O\(_3\) interface, using reactive magnetron sputtering with coating thickness adjusted to 1, 2, and 3 µm, and had been cut to 10 mm lengths.

The encapsulated materials were sintered by Hot Isostatic Pressing (HIP) at a constant pressure of 200 MPa, while varying the sintering temperature between 1300-1900°C. The dwell time of 4 hr at maximum temperature was kept constant in all HIP runs.

The authors reported that temperatures in the range of 1500-1600°C were found to be required to achieve densities higher than 95% of the theoretical density, at a pressure of 200 MPa. Higher temperatures would slightly improve the densification but lead to unacceptably high grain growth of the fibre and matrix, which decreases the mechanical strength of the Wf/W composite. A maximum density of 99.5% TD was reportedly achieved at 1700°C. Fig. 1 shows the processing stages of Wf/W samples by HIPing. Tests were carried out to compare the HIPed Wf/W samples with Wf/W samples prepared by established CVD technology. Analysis of the matrix showed a denser W bulk, a deformed fibre and a deformed but still intact interface layer. Special emphasis was placed on push-out tests of single-fibre HIP samples, where a load is applied via a small indenter on the fibre, to test the debonding and frictional properties of the Er\(_2\)O\(_3\) interface region enabling the energy dissipation mechanisms. The authors reported that, while the fibre push-out of the CVD samples behaves as predicted in the shear-lag model, the HIPed Wf/W samples showed a superposition of effects, which they stated impeded sound conclusions regarding interface parameters of the system.


Fig. 1 Processing steps of single-fibre Wf/W composites using hot isostatic pressing (From paper by B. Jasper, et al. as published in the Proceedings of the 19th Plansee Seminar)

Fig. 2 Microstructure of Wf/W composites with a 1 µm thick Er\(_2\)O\(_3\) interlayer produced by (a) hot isostatic pressing, HIP at 1600 °C, 200 MPa, 3 h and (b) Chemical vapour deposition, CVD (From paper by B. Jasper, et al., as published in the Proceedings of the 19th Plansee Seminar)
Permanent magnets are vital components in a wide variety of products. From mobile phones to computer hard drives to electric vehicles, they can be found in almost every aspect of modern life (Fig. 1). Applications include devices which use the attractive and repulsive forces of magnets, such as door latches, magnetic levitation, torque couplers and magnetic separators. They are also used in devices that convert mechanical to electrical energy, such as magnetos and alternators, as well as devices that convert electrical to mechanical energy such as DC motors, loudspeakers, meters and disk drives. Magnets can also be used for focusing electron beams and in magnetic resonance imaging units. As demand for greener energy grows, with electric and hybrid vehicles becoming more mainstream, the need for more powerful magnets continues.

Permanent magnets are a class of magnets in which a magnetic flux remains, in contrast to an electromagnet for example, which only behaves like a magnet when an electric current is flowing through it. A good permanent magnet should produce a high magnetic field with a low mass, and should be stable against the influences which could demagnetise it. The desirable properties of such magnets are typically stated in terms of

Rare earth permanent magnets have, for the past forty years dominated the higher performance magnetic devices market. However, the availability of raw materials globally is proving a risk to market stability for this important class of magnet. Material scientists have the opportunity to address this issue and the use of elements such as nitrogen, nanostructured materials and metastable materials, is now being explored. Dr Sim Narasimhan reviews the developments and the challenges facing these alternative materials.
The development of rare earth magnets

The evolution of rare earth permanent magnets can be seen in Fig. 2. This figure highlights the improvements made in energy product and identifies a number of key researchers notable for advancing the materials’ development. Prior to 1960, rare earths were used primarily in the steel industry for deoxidation and grain refining purposes. It was Professor William Illing Wallace [2] and his team at the University of Pittsburgh, Pennsylvania, USA, who began exploration of the usage of rare earths in other areas. This group combined rare earth metals with cobalt, nickel, and other elements and identified the crystal structure and magnetic properties of a number of intermetallics [1]. In late 1960, under an Air Force Materials Laboratory Contract, Professor Stratton at the University of Dayton, Ohio, USA, identified YOs and later SmOs, to have potential to be processed into magnets [3]. J J Becker and Bernard Martin of GE R&D centre demonstrated processing details for the production of permanent magnets with RIR = Rare earth (Co) [3]. Crucible Steel Corporation in Pittsburgh, USA, under an Air Force Materials Research grant, developed a low-oxygen process where the entire crushing, milling, compaction and sintering were all done in a low oxygen atmosphere to the remanence and coercivity of the magnet materials. Common permanent magnets are ferrites, alnico and rare earth (RE) magnets (Re2O3, Re, Cobalt, type, NdFeB). Processing of these magnets is predominantly by the Powder Metallurgy route, except for alnicos which are commonly produced by sand casting. Of these, rare earth magnets have a very high ‘energy product’ – a term that defines the volume of the magnet necessary for the maximum performance of a device. The higher the energy product, the smaller the magnet necessary. This energy efficiency is key in allowing the miniaturisation of products, and is one of the main advantages of rare earth magnets. Ferrite magnets, on the other hand, are often seen as the ‘workhorse’ magnet as they are cheaper and suited to many applications where miniaturisation is not the primary focus.

Rare earths

Rare earths consist of fifteen elements referred to as; inner transition elements. Yttrium and scandium have similar properties to rare earths and, hence, are often counted along with rare earths. In nature, they occur together with varying proportions in different ore bodies. The first seven elements (lanthanum, cerium, praseodymium, neodymium, samarium, europium and short-lived promethium) are called light rare earths and they occur in monazite and bastnasite ores, in predominant quantities. Gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium are called heavy rare earths and occur in xenotime and other rare earth ores. The dispersion of rare earths globally is shown in Table 1. Heavy rare earths Dy, Tb and Gd, which are predominant in Chinese earth ores, are used in small quantities in NdFeB magnets for improved thermal stability.

Table 1 Dispersion of rare earths in various ore bodies, globally (Indian, Kerala Monazite beach sand is the second largest monazite deposit in the world; second largest bastnasite deposit is in Inner Mongolia, China). *Data are rounded to no more than three significant digits; may not add to totals shown.

<table>
<thead>
<tr>
<th>Rare earth</th>
<th>Monazite</th>
<th>Bastnasite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>1.05</td>
<td>0.30</td>
</tr>
<tr>
<td>Ho</td>
<td>2.60</td>
<td>0.20</td>
</tr>
<tr>
<td>Sm</td>
<td>5.00</td>
<td>0.30</td>
</tr>
<tr>
<td>Er</td>
<td>7.00</td>
<td>0.40</td>
</tr>
<tr>
<td>Nd</td>
<td>11.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Th</td>
<td>12.00</td>
<td>1.00</td>
</tr>
<tr>
<td>La</td>
<td>18.00</td>
<td>9.00</td>
</tr>
<tr>
<td>Ce</td>
<td>22.00</td>
<td>10.00</td>
</tr>
<tr>
<td>Pr</td>
<td>25.00</td>
<td>12.00</td>
</tr>
<tr>
<td>Gd</td>
<td>30.00</td>
<td>15.00</td>
</tr>
<tr>
<td>Tb</td>
<td>36.00</td>
<td>20.00</td>
</tr>
<tr>
<td>Dy</td>
<td>42.00</td>
<td>25.00</td>
</tr>
<tr>
<td>Eu</td>
<td>48.00</td>
<td>30.00</td>
</tr>
<tr>
<td>Tm</td>
<td>54.00</td>
<td>35.00</td>
</tr>
<tr>
<td>Yb</td>
<td>60.00</td>
<td>40.00</td>
</tr>
<tr>
<td>Lu</td>
<td>66.00</td>
<td>50.00</td>
</tr>
</tbody>
</table>

Fig. 2 Evolution of rare earth magnets 1MGOe = 8 kJ/m³

Fig. 3 Professor William Wallace and colleagues are credited with the discovery of rare-earth permanent magnets (author left)
avoid formation of rare earth oxides which can diminish the potential of obtaining maximum energy product. SmCo5 was processed by the low oxygen technique to BH\textsubscript{max} 25–28 MGOe [199–223 kJ/m\textsuperscript{3}] [4]. Applications for RCo5 rapidly increased, but problems lingered regarding the availability of samarium for high volume applications in the automotive sector. For mischmetal (MM), which consists of cerium 46–55 wt.%, lanthanum 20–30 wt.%, praseodymium 4–7 wt.%, neodymium 13–20 wt.% availability was significantly greater than for samarium. However, cerium levels must be reduced in mischmetal, as cerium in MMOs lowers the curie temperature. At Crucible Materials Corporation, Kalathur Narasimhan, the author of this article, and his team developed a tailored mischmetal with a reduced cerium content through the electrolysise of mixed rare earth chlorides [5]. The tailored MM magnets were processed to 15 MMOs (119 kJ/m\textsuperscript{3}). This was acceptable to General Motors for a variety of automotive applications. However, just when GM was ready to launch rare earth magnets in the automotive sector in late 1970, cobalt prices increased twenty-fold, and supply of cobalt from Zaire was becoming restricted. GM therefore wanted cobalt-free magnets. As always, inconvenience was the mother of invention, and cobalt-free magnet development was initiated by the US Naval Research Laboratory in late 1970. Kollomorgen Corporation’s George Hadjipanayis, Kalathur Narasimhan of Crucible Materials Corporation, Norman Roon of the Naval Research Laboratory, Professor Hans Staudenmaier of NC State University, C D Graham of the University of Pennsylvania and Prof. Lawless of the University of Virginia were all involved in developing cobalt-free magnets under Navy research grants. New materials were identified that were cobalt-free [6]. At the same time, John Croat and others at GM Research were developing the melt spin process for cobalt-free magnets [7]. Sagawa of Sumitomo Electric Corporation was also active in this area, and it was announced that cobalt-free NdFeB could be processed by a conventional process and sinter approach to 38 MGOe (302 kJ/m\textsuperscript{3}), using a process similar to that developed for rare earth cobalt magnets [8]. In 1983, using a low oxygen process, Narasimhan processed NdFeB at 45–46 MGOe (358–364 kJ/m\textsuperscript{3}) [9], the highest energy product ever reported at that time. Commercial production was limited to about 38 MGOe (302 kJ/m\textsuperscript{3}). In the ensuing twenty years, ongoing development has resulted in commercial magnets that are now produced at up to 55 MGOe (438 kJ/m\textsuperscript{3}).

**The permanent magnet market**

The permanent magnet market is growing at a significant pace, mainly driven by a rise in the demand for rare earth permanent magnets. Rare earth magnets are replacing the majority of alnico magnets and, to a large extent, ferrites, due to the higher energy products of this material. Table 2 compares ferrite magnets with alnico and neodymium magnets in speaker applications. As is clear, miniaturisation of devices can be made possible using powerful neodymium magnets, as was exemplified in the success of earlier Sony Walkman-type devices, earphones and hearing aids. Further applications for permanent magnets can be seen in Table 3, and a selection of automotive examples can be seen in Fig. 4 and Table 4.

**Manufacturing process for magnets**

A typical hysteress loop for permanent magnet is shown in Fig. 5. The energy product (B\textsubscript{h} x H) defines the volume of the magnet necessary to provide flux in an operating device. In order to manufacture rare earth magnets, a powder metallurgical process is employed. The concept is to produce close to single domain particles, which can subsequently be oriented in a magnetic field, compacted and sintered.

**Table 2** This comparison of the properties of ferrite, alnico and neodymium magnets in speaker applications clearly demonstrates the advantages of rare earth magnets in applications such as earphones.

**Table 3** Typical applications of permanent magnets.

**Table 4** Examples of magnet usage in automobiles.

**Fig. 4** Rare earth usage in a typical hybrid vehicle. Electric and hybrid cars can contain more than twice as much rare earth metal as a standard car.

**Table 3** Typical applications of permanent magnets.

<table>
<thead>
<tr>
<th>Device</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motors</td>
<td>Industrial, automotive and consumer products</td>
</tr>
<tr>
<td>Constant speed drives, traction, fractional horsepower serve motors, robotics, machine tool axes and spindles, material handling, aerospace actuators, hand tools, antenna tracking, transport accessories, starters, stepper motor, cell phone vibration motors</td>
<td></td>
</tr>
<tr>
<td>Audio frequency transducers</td>
<td>Speakers, microphones</td>
</tr>
<tr>
<td>MMR tomography (MRI)</td>
<td>Full body stationery, portable units</td>
</tr>
<tr>
<td>Bearings</td>
<td>Pumps, flywheels, space craft stabilisation, anti-vibration mountings</td>
</tr>
<tr>
<td>Separation</td>
<td>Magnetic separation units</td>
</tr>
<tr>
<td>Microwave</td>
<td>Travelling wave tubes, telecommunication</td>
</tr>
<tr>
<td>Computers</td>
<td>Disk Drive motors, Spindle motors, printer motors</td>
</tr>
<tr>
<td>Wind power</td>
<td>Direct drive motors, energy storage systems</td>
</tr>
<tr>
<td>Military</td>
<td>Weapons guidance systems, robotics, rail guns,</td>
</tr>
<tr>
<td>Switches</td>
<td>Electromagnetic relays, circuit breakers</td>
</tr>
</tbody>
</table>

**Fig. 4** Rare earth usage in a typical hybrid vehicle. Electric and hybrid cars can contain more than twice as much rare earth metal as a standard car.

**Table 4** Examples of magnet usage in automobiles.

<table>
<thead>
<tr>
<th>Device use in automotive applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durock actuator</td>
</tr>
<tr>
<td>Window lift motor</td>
</tr>
<tr>
<td>Mirror tilt motor</td>
</tr>
<tr>
<td>Starter motor</td>
</tr>
<tr>
<td>Radiator fan</td>
</tr>
<tr>
<td>Cruise control actuator</td>
</tr>
<tr>
<td>Air pump actuator</td>
</tr>
<tr>
<td>Steering control motor</td>
</tr>
<tr>
<td>Water pump motor</td>
</tr>
</tbody>
</table>

**Table 4** Examples of magnet usage in automobiles.

<table>
<thead>
<tr>
<th>Device use in automotive applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durock actuator</td>
</tr>
<tr>
<td>Window lift motor</td>
</tr>
<tr>
<td>Mirror tilt motor</td>
</tr>
<tr>
<td>Starter motor</td>
</tr>
<tr>
<td>Radiator fan</td>
</tr>
<tr>
<td>Cruise control actuator</td>
</tr>
<tr>
<td>Air pump actuator</td>
</tr>
<tr>
<td>Steering control motor</td>
</tr>
<tr>
<td>Water pump motor</td>
</tr>
</tbody>
</table>

**Table 4** Examples of magnet usage in automobiles.
Production of single domain particles

The press and sinter permanent magnet processing route requires the cast alloy to be crushed and ground to close to single domain size. The single domain diameter of NdFeB is 0.2-0.6 µm, SmCo is 0.8 µm and Sm–Co, 0.5 µm. At this size it is very difficult to handle the powder as it is extremely pyrophoric, so instead the cast alloy (Fig. 6) is crushed and jet milled to around 2-3 µm grain size with a few domains (Fig. 7).

Compaction

The crushed powder is then compacted in a die under a magnetic field, which allows each of the grains to orient towards the magnetic field to maximise induction (Fig. 8).

Sintering

The green compact is sintered in vacuum at a temperature of 1040-1160°C, depending on the composition of the alloy. Often, it is customary to mix rare earth lean alloy with rare earth rich alloy to achieve the correct stoichiometry of NdFeB.

After sintering, an ageing step at about 930°C is included. Ageing allows the formation of the grain boundary rare earth rich phase, which helps to control the coercivity of the magnet.

Finishing and magnetisation

To meet dimensional tolerances, magnets are often machined or ground to the final shape. It is also essential in the case of NdFeB that they are coated to prevent corrosion and Ni, Ni-Cu-Ni or polymer coatings are usually employed. When magnets are first produced they are generally not magnetic, and need to be magnetised in order to reach the required properties.

For a number of reasons, it is often preferable to magnetise the magnets in the final assembly of the product or device. Magnets can be extremely powerful and careful handling is necessary to avoid chipping them or injuring operators. Special magnetising fixtures are required to magnetise them and a pulse field of 60 kOe is generally applied.

Global supply of rare earth magnets

Although developed in the USA and Japan, the supply chain for rare earth magnets began shifting towards China in early 2000. According to the United States Congressional Research Service, China now produces 97% of rare earth oxides, 97% of rare earth oxides, 97% of rare earth alloys, 75% of neodymium iron boron magnets and 60% of samarium cobalt magnets (Fig. 9).

The supply chain consists of mining, separation, refining, alloying and manufacturing devices and magnets. With an abundance of rare earths, China can control raw material prices at will and, in recent years, has implemented a quota on their export. This dominance is a cause for concern for many governments and the numerous industries that rely on a steady supply of those materials. Extensive research is now underway to mitigate raw material supply issues. Discussed below are some of the current activities in the development of new magnets as well as work to reduce the amount of rare earth used in magnets.

Alternatives to reduce rare earth usage

Magnetic materials useful for the permanent magnet industry are shown in Table 5. This table also lists the origin of coercive force in those magnetic materials which may provide a clue to finding newer materials. Generally, higher anisotropy is seen in non-cubic systems. However, cubic systems such as alnico, which exhibit shape anisotropy, may offer some possibilities. Fe, Co, Ni and Mn are critical elements for magnets. Listed in Table 6 are magnetic moments of rare earth intermetallics. Light rare earths containing RCo2 have very good magnetic properties, except for NdCo2. The heavy rare earths (Gd and above) magnetic moments couple anti-parallel with cobalt moments and reduce the maximum induction that can be achieved.

RCO2, with a CaCu5 crystal structure, may provide a clue to finding newer materials. Generally, higher anisotropy is seen in non-cubic systems. However, cubic systems such as alnico, which exhibit shape anisotropy, may offer some possibilities. Fe, Co, Ni and Mn are critical elements for magnets. Listed in Table 6 are magnetic moments of rare earth intermetallics. Light rare earths containing RCo2 have very good magnetic properties, except for NdCo2. The heavy rare earths (Gd and above) magnetic moments couple anti-parallel with cobalt moments and reduce the maximum induction that can be achieved. RCo2 has a CaCu5 crystal structure, may offer some possibilities. However, cubic systems such as alnico, which exhibit shape anisotropy, may offer some possibilities. Fe, Co, Ni and Mn are critical elements for magnets. Listed in Table 6 are magnetic moments of rare earth intermetallics. Light rare earths containing RCo2 have very good magnetic properties, except for NdCo2. The heavy rare earths (Gd and above) magnetic moments couple anti-parallel with cobalt moments and reduce the maximum induction that can be achieved.

RCO2, with a CaCu5 crystal structure, may provide a clue to finding newer materials. Generally, higher anisotropy is seen in non-cubic systems. However, cubic systems such as alnico, which exhibit shape anisotropy, may offer some possibilities. Fe, Co, Ni and Mn are critical elements for magnets. Listed in Table 6 are magnetic moments of rare earth intermetallics. Light rare earths containing RCo2 have very good magnetic properties, except for NdCo2. The heavy rare earths (Gd and above) magnetic moments couple anti-parallel with cobalt moments and reduce the maximum induction that can be achieved. RCo2 has a CaCu5 crystal structure, may offer some possibilities.
structure, shown in Fig. 10. Cobalt in hexagonal array has rare earth in the middle. In the case of SmCo₅, Sm provides an enhanced crystalline electric field to force the magnetic moments to the easy axis of the magnetisation c-axis, SmCo₅ has an anisotropy field of 350 kOe (anisotropy field is the field required to saturate the magnetic material in the hard direction, a measure of how much coercive force can be generated). The hexagonal array of cobalt, by itself, provides the anisotropy, as evidenced by the high anisotropy field seen in YCo₅, of about 129 kOe [2]. Yttrium is a non-magnetic element, so the anisotropy field seen in YCo₅ is mainly from the cobalt sublattice. Exploring other materials that could place cobalt atoms in a similar configuration will be useful.

**Table 5** Magnetic properties and the origin of coercive force in well-known permanent magnets [10]

<table>
<thead>
<tr>
<th>Coercive force origin</th>
<th>Alloy</th>
<th>Bₘ, Tesla</th>
<th>Hₑ, kA/m</th>
<th>(BH)ₘ, kJ/m³</th>
<th>Theoretical (BH)ₘ, kJ/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superstructure alloys</td>
<td>Pt-Fe</td>
<td>0.58</td>
<td>124.8</td>
<td>23.8</td>
<td></td>
</tr>
<tr>
<td>Pt-Ni</td>
<td>Low Curie temp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt-Co</td>
<td>0.64</td>
<td>397.5</td>
<td>75.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn-Bi</td>
<td>0.43</td>
<td>270</td>
<td>36.18</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>Mn-Al</td>
<td>0.572</td>
<td>139</td>
<td>28.6</td>
<td>75.5</td>
<td></td>
</tr>
<tr>
<td>Mn-Al-C</td>
<td>0.52 - 0.62</td>
<td>159 - 206</td>
<td>45.3</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>Crystalline anisotropy metallic magnets</td>
<td>Re-Co</td>
<td>0.88 - 0.94</td>
<td>700 - 715</td>
<td>151 - 175</td>
<td>238</td>
</tr>
<tr>
<td>Re-Co₁₇</td>
<td>1.00 - 1.06</td>
<td>715 - 795</td>
<td>199 - 223</td>
<td>238 - 222</td>
<td></td>
</tr>
<tr>
<td>Re-Co₅</td>
<td>1.04 - 1.12</td>
<td>763 - 779</td>
<td>215 - 242</td>
<td>286 - 477</td>
<td></td>
</tr>
<tr>
<td>Crystalline anisotropy ceramic magnets</td>
<td>Nd-Fe-B</td>
<td>0.71 - 1.47</td>
<td>795 - 922</td>
<td>207 - 422</td>
<td>598</td>
</tr>
<tr>
<td>Sm-Co</td>
<td>0.38 - 0.40</td>
<td>159 - 318</td>
<td>37 - 30.2</td>
<td>44.5</td>
<td></td>
</tr>
<tr>
<td>Crystalline anisotropy anisotropic magnets</td>
<td>Co-Co₂</td>
<td>0.41 - 0.42</td>
<td>238 - 198</td>
<td>31.8 - 33.3</td>
<td>44.5</td>
</tr>
<tr>
<td>Exchange anisotropy magnets</td>
<td>Co-Co₂</td>
<td>Low temp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe-Co Ferrite</td>
<td>0.62</td>
<td>124</td>
<td>32</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Steels</td>
<td>Fe-W-C</td>
<td>0.9</td>
<td>20</td>
<td>7.55</td>
<td></td>
</tr>
<tr>
<td>Precipitation alloys</td>
<td>Fe-Al-Ni-Co</td>
<td>1.05</td>
<td>48</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>&lt;Atomic Fe-Al-Ni-Co</td>
<td>1.35</td>
<td>59</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold deformation alloys</td>
<td>Fe-Co/V</td>
<td>1.10</td>
<td>24</td>
<td>13.5</td>
<td></td>
</tr>
</tbody>
</table>

**Table 6** Magnetic moments of common magnetic elements

<table>
<thead>
<tr>
<th>Element</th>
<th>3d/4f electrons</th>
<th>Magnetic moment µB/atom</th>
<th>Element</th>
<th>3d/4f electrons</th>
<th>Magnetic moment µB/atom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn</td>
<td>3d³</td>
<td>3.4</td>
<td>Sm</td>
<td>5d²</td>
<td>0.85</td>
</tr>
<tr>
<td>Fe</td>
<td>3d⁶</td>
<td>2.4</td>
<td>Gd</td>
<td>7d⁶</td>
<td>7.94</td>
</tr>
<tr>
<td>Co</td>
<td>3d⁷</td>
<td>1.6</td>
<td>Tb</td>
<td>8d⁶</td>
<td>9.72</td>
</tr>
<tr>
<td>Ni</td>
<td>3d⁸</td>
<td>0.6</td>
<td>Dy</td>
<td>9d⁶</td>
<td>10.65</td>
</tr>
<tr>
<td>La</td>
<td>5d⁰</td>
<td>0</td>
<td>Ho</td>
<td>10d⁶</td>
<td>10.6</td>
</tr>
<tr>
<td>Ce</td>
<td>4d⁰</td>
<td>2.54</td>
<td>Er</td>
<td>11d⁶</td>
<td>9.58</td>
</tr>
<tr>
<td>Pr</td>
<td>3d⁵</td>
<td>3.58</td>
<td>Tm</td>
<td>12d⁶</td>
<td>7.56</td>
</tr>
<tr>
<td>Nd</td>
<td>3d⁴</td>
<td>3.62</td>
<td>Yb</td>
<td>13d⁶</td>
<td>4.54</td>
</tr>
</tbody>
</table>

**Fig. 10** Searching for similar hexagonal array of cobalt atoms in intermetallic compound would be a worthwhile effort

**Fig. 11** Mixing high induction soft phase with high anisotropy hard phase will produce net magnetisation that is not useful for permanent magnet applications [12]

**Fig. 12** Exchange scheme in spring magnet coupling at the interface of soft magnets with high saturation magnetisation and high anisotropy ferromagnet [12]
Rare earth magnets and alternatives

Other magnetic materials

MnBi has good magnetocrystalline anisotropy, with an anisotropy constant of 1 ×106 J/m3 [24, 25], and a saturation induction of 0.6 T and coercivity that increases with increasing temperature and reaches nearly 26 kOe at 250°C, making it useful in the high-temperature region up to about 150°C. If a nanomagnetic soft phase is embedded in a MnBi matrix, it should be possible to increase induction. Research in these areas is reported to be ongoing.

FeAl Co undergoes spinodal decomposition at about 850°C into two BCC phases, ferromagnetic Fe-Co phase and the weakly magnetic NiAl phase. Fe-Co particles are ellipsoidal (Fig. 15) and of single domain nano-size, giving the coercive force from shape anisotropy. If the matrix phase in alnicos (NiAl) is replaced with an antiferromagnetic phase with high anisotropy, the interface of ferromagnetic phase and the antiferromagnetic phase could make interfacial exchange-coupled permanent magnets with enhanced coercive force. The advantage of alnico magnets is the ease of processing, which consists mainly of coating and heat treating. However, much further research in this area is necessary.

Fe-Co alloys have a high saturation induction at 35% cobalt, nanocomposites made with Fe-Co tend to have a high energy product. Ajay Misra reported theoretical energy products in Nano sandwiches shown in Fig. 13 [21]. The problem remains in making practical usable magnets out of these nanocomposites. A number of possibilities are being explored.

Exchange-biased Magnets

In this case, if an antiferromagnet with high anisotropy is coupled with a higher saturation magnetisation soft phase, then the anisotropy of the antiferromagnet provides the rotation of magnetic moment in the soft phase, resulting in a good permanent magnet. Meskijohn and Bean demonstrated this in the mid-1950s, when the effect was called interfacial exchange anisotropy [22, 23]. A schematic of the exchange-biased magnet is shown in Fig. 14. A possibility exists to exploit this exchange-biased coupling scheme in alnico. Alnico magnets have been the workhorse for magnet applications, along with ferrite magnets, up until the advent of rare earth magnets. Alnico magnets are nano-scale composite magnets. The

FeAl Co undergoes spinodal decomposition at about 850°C into two BCC phases, ferromagnetic Fe-Co phase and the weakly magnetic NiAl phase. Fe-Co particles are ellipsoidal (Fig. 15) and of single domain nano-size, giving the coercive force from shape anisotropy. If the matrix phase in alnicos (NiAl) is replaced with an antiferromagnetic phase with high anisotropy, the interface of ferromagnetic phase and the antiferromagnetic phase could make interfacial exchange-coupled permanent magnets with enhanced coercive force. The advantage of alnico magnets is the ease of processing, which consists mainly of coating and heat treating. However, much further research in this area is necessary.

FeAl Co undergoes spinodal decomposition at about 850°C into two BCC phases, ferromagnetic Fe-Co phase and the weakly magnetic NiAl phase. Fe-Co particles are ellipsoidal (Fig. 15) and of single domain nano-size, giving the coercive force from shape anisotropy. If the matrix phase in alnicos (NiAl) is replaced with an antiferromagnetic phase with high anisotropy, the interface of ferromagnetic phase and the antiferromagnetic phase could make interfacial exchange-coupled permanent magnets with enhanced coercive force. The advantage of alnico magnets is the ease of processing, which consists mainly of coating and heat treating. However, much further research in this area is necessary.

FeAl Co undergoes spinodal decomposition at about 850°C into two BCC phases, ferromagnetic Fe-Co phase and the weakly magnetic NiAl phase. Fe-Co particles are ellipsoidal (Fig. 15) and of single domain nano-size, giving the coercive force from shape anisotropy. If the matrix phase in alnicos (NiAl) is replaced with an antiferromagnetic phase with high anisotropy, the interface of ferromagnetic phase and the antiferromagnetic phase could make interfacial exchange-coupled permanent magnets with enhanced coercive force. The advantage of alnico magnets is the ease of processing, which consists mainly of coating and heat treating. However, much further research in this area is necessary.

FeAl Co undergoes spinodal decomposition at about 850°C into two BCC phases, ferromagnetic Fe-Co phase and the weakly magnetic NiAl phase. Fe-Co particles are ellipsoidal (Fig. 15) and of single domain nano-size, giving the coercive force from shape anisotropy. If the matrix phase in alnicos (NiAl) is replaced with an antiferromagnetic phase with high anisotropy, the interface of ferromagnetic phase and the antiferromagnetic phase could make interfacial exchange-coupled permanent magnets with enhanced coercive force. The advantage of alnico magnets is the ease of processing, which consists mainly of coating and heat treating. However, much further research in this area is necessary.
Porous sintered self-lubricating bearings are a classic product of the Powder Metallurgy industry, with widespread applications in the electrical motors of home appliances and many other machines [1]. Millions of these components are manufactured every year by cold pressing, sintering, sizing and oil impregnation (Fig. 1).

A typical material used for their production is bronze with 10% tin, which allows for optimal behaviour in terms of load-velocity combination (the so-called ‘PV value’), but iron-copper and iron-bronze materials are also well established, cost-effective formulations [2].

The shaft-bearing tribological system can be best described by its Stribeck curve. When the shaft starts turning, direct contact between the two surfaces causes attrition and wear, since the rotation speed is insufficient to trigger hydrodynamic lubrication. As the shaft gathers speed, oil is drawn by capillary action towards the bearing-shaft interface. A stable lubricant film sets in between shaft and bearing, which prevents direct surface contact and renders friction coefficients as low as 0.03; an oil dispenser might also be implemented to extend the bearing’s service life [1].

The main oil reservoir is the bearing’s porosity, which is typically around 15-25%. This in turn affects the green strength requirements of the pressed powder; given that dimensional change is normally limited to below 1%, for both precise...
Iron-based self-lubricating bearings

## Evaluation of iron-based premixes

Nine different iron-based premixes were prepared in the laboratory using three different types of industrially produced iron powders, combined with three different natural graphites. One base iron is a sponge grade 'Fersint' normally employed for bearings; the other two are based on newly developed water atomised iron powders: WA 1 (3) and traditional water atomised iron powder 'Fersint'. Copper was introduced into iron powder by a diffusion bonding process, at a level of 20 wt.%. After milling, 1.80% medium-coarse natural graphite (D<sub>90</sub> = 90 µm) and 0.80% amide wax were subsequently admixed and homogenised for 15 minutes in a Y-shaped rotating mixer. Apparent density and flow time were measured using a Hall flowmeter with a 2.5 mm hole (ISO 3995) and ISO 4490).

For the evaluation of green properties, TRS bars 30 x 12 x 6 mm were compacted at a constant pressure of 600 MPa and subsequently broken in a 3-point bending test (ISO 3995). Bushes with nominal 20 mm external and 15 mm internal diameters, 10 mm height were compacted at 6.0 ± 0.01 g/cm³ density and crushed by applying a force along the radial direction. Radial crushing strength is then calculated by applying the following formula (ISO 2739) shown in Fig. 2.

For sintering tests, bushes with 14 mm external and 9 mm internal diameters, 10 mm height were compacted at a constant green density of 6.00 g/cm³. Sintering was performed in a laboratory bell furnace at a temperature of 880/1020°C for 8 minutes, under a B<sub>2</sub>O<sub>3</sub>-20H<sub>2</sub>O atmosphere and normal cooling conditions (cooling rate around 1.0°C/min) calculated between 650 and 315°C. After sintering operations, dimensional change (D.C.) was calculated as the percentage variation of final sintered external diameter with respect to die diameter; radial sintered crushing strength was evaluated through the formula described in Fig. 2, while radial deformation ΔH<sub>r</sub> was taken as the percentage ratio of radial deformation Δ to Dest. This parameter gives an indication of the maximum deformation that can be imposed during sizing; a higher value is desirable since it means that the material can accommodate larger radial deformation without failure.

### Die filling, compressibility and sintering

Moving now to compressibility, we see that water atomised powders as a group outperform the sponge iron counterpart. The highest value is attained by Fersint, followed by WA 1. Graphite granulometry has almost negligible effects. Green strength at constant pressure is definitely lower for Fersint with respect to other products, which all feature similar values. Coarser graphites are slightly beneficial, by interposing among less iron particle contacts. In the manufacturing of bearings, K<sub>s</sub> is a key parameter, being green density fixed during the pressing operation, typically around 5.80–6.20 g/cm³. A minimum value is required in order to be able to extract and handle the compacts between the pressing and sintering operations. There is no generally valid threshold value, which depends on wall thickness, component dimensions and manipulation process; it seems that a minimum of 3 MPa is demanded to provide acceptable consistency in industrial practice. Sponge I gives the highest values, followed by WA 1; Fersint performs rather poorly. A coarser graphite is definitely beneficial for this green strength measure, especially for water atomised powders (up to 30%). For sponge iron, it is slightly above 10%.

The sintered properties are shown against graphite type, for each base iron powder, in Figs. 3–8. Dimen-

---

### Table 1 Packing and green properties of experimental premixes FeCu20 + 1.80% graphite + 0.80% wax

<table>
<thead>
<tr>
<th>Graphite</th>
<th>Packing properties</th>
<th>TRS bars @ 600 MPa</th>
<th>Bushes @ 6.00 g/cm³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D90 (µm)</td>
<td>Flow [s/50g]</td>
<td>App. Dens. [g/cm³]</td>
</tr>
<tr>
<td><strong>Sponge I</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-</td>
<td>2.46</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>38.0</td>
<td>2.47</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>35.5</td>
<td>2.38</td>
</tr>
<tr>
<td><strong>WA 1</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-</td>
<td>2.49</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>39.0</td>
<td>2.51</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>34.0</td>
<td>2.45</td>
</tr>
<tr>
<td><strong>Fersint</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>-</td>
<td>2.86</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>36.5</td>
<td>2.86</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>32.0</td>
<td>2.79</td>
</tr>
</tbody>
</table>

---

Fig. 2 Calculation of green (K<sub>d</sub>) and sinter (K<sub>s</sub>) radial crushing strength

Fig. 3 Dimensional change against graphite granulometry for each iron powder after sintering at 880°C

Fig. 4 Dimensional change against graphite granulometry for each iron powder after sintering at 1020°C

---

### Table 1 Die filling and green properties for each premix

Table 1 presents the results on the die-filling and green properties for each premix. The results for Sponge I and WA 1 are very close to each other, while Fersint, as expected, has the highest apparent density with slightly improved flow rate. The finest, 25 µm graphite grade renders the mixes to not be free flowing, while coarser grades markedly improve this important processing property. This is related to both the lower intrinsic flowability of fine powders and to their higher specific surface, which creates a more widespread theological interaction with the base material.

---

**Iron-based self-lubricating bearings**

Winter 2017 | Powder Metallurgy Review
---

© 2017 Inovar Communications Ltd
sional change results depend first of all on the base powder, with WA 1 always showing the least growth – or even shrinkage. As documented in [4], for a given base powder, the dimensional behaviour in this temperature range is determined by the degree of carbon diffusion in the austenite phase. The introduced lattice distortion causes an expansion which more than compensates for the natural tendency to shrinkage driven by surface area reduction. Finer graphite granulometry favours deeper carbon diffusion and is thus generally related to higher growth. The 25 µm and 90 µm grades are not very dissimilar, while a noticeable effect is observed with the 150 µm grade at 880°C. Higher temperature enhances both carbon diffusion and surface-free energy reduction (i.e., shrinkage) and its net effect is on average very small, around 0.05% only. The graphite effect is muted, with less variation, especially when comparing the 150 µm grade to the other two. This also means that these materials are insensitive to temperature fluctuations, as far as dimensional properties are concerned.

The mechanical properties are displayed in Figs. 5 and 6. Radial crushing strength, measured by the K factor, is at a maximum for WA 1, especially after 880°C sintering, when evaluated against the other materials. At higher sintering temperature, all mechanical properties increase substantially, being boosted by stronger particle neck formation and carbon microstructural strengthening.

Graphite particle size effect follows a complex pattern, depending on both sintering temperature and base powder. While, at 880°C, a coarser size favours K, up to 40% for Sponge I, the reverse is true at 1020°C, in particular for Sponge I (1-30% variation). The combination of 90 µm graphite – 880°C looks relatively unfavourable, especially for WA 1, the result was confirmed by other experiments, but it is difficult to explain. Water atomised powders are less sensitive to graphite type in this respect. A trend very similar to that for K, is followed by radial deformation at fracture. “At 1020°C, graphite particle size becomes the driver of carbon dissolution and thus hardness...”

Fig. 5 Radial crushing strength factor K against graphite granulometry for each iron powder after sintering at 880°C

Fig. 6 Radial crushing strength factor K against graphite granulometry for each iron powder after sintering at 1020°C

WA 1; the result was confirmed by other experiments, but it is difficult to explain. Water atomised powders are less sensitive to graphite type in this respect. A trend very similar to that for K, is followed by radial deformation at fracture. “At 1020°C, graphite particle size becomes the driver of carbon dissolution and thus hardness...”

A deeper understanding of the macroscopic behaviour can be acquired by combining micro-hardness measurements with metallographic observations. Comparing Figs. 7 with Fig. 8, it is clear how higher sintering temperature translates into overall improved hardness, although such an increment is strongly related to graphite particle size. The finest grade shows an average increase of around 110 HV, the intermediate of 40 HV and the coarsest remains practically constant. This suggests that the 150 µm grade shows such little reactivity that its diffusion into iron does not change much over this temperature range. At 880°C, low hardness variation is observed with graphite, with a surprising slight increase for coarse particles; at 1020°C, a well-defined tendency can be appreciated, with the finest graphite associated with the highest hardness, as expected in view of its enhanced diffusivity into iron. It is thought that, as atomic carbon diffusion into austenite is still relatively slow at 880°C [4], the graphite particle size is not an important limiting factor. The hard-atomised grades turn out generally harder than sponge powder, more so at lower sintering temperatures. Microstructures confirm these comments. Figs. 9 and 10 show the results after low temperature sintering (880°C) for 8 minutes, for the finest and coarsest graphites. The same ferritic microstructure is displayed by iron particles in each material, with no significant difference whatsoever. Some pearlite traces can be seen for WA 1 and also Fersint, which account for the slightly higher hardness observed. Sponge iron particles feature their characteristic internal porosity, which is...
Iron-based self-lubricating bearings

Conclusions
The die-filling, green and sintered properties of both water atomised and sponge iron-based Fe-Cu compounds for porous bearings were assessed, taking into account their interaction with graphite particle size.

For optimal filling characteristics, a coarse graphite gives clear advantages. Even if apparent density is marginally higher, free-flowing behaviour cannot be achieved when the 25 µm graphite grade is compromised. This explains why fine grades are typically avoided for such mixes. It is notable how the special water atomised-based WA 1 can give an apparent density very close to sponge iron.

Water atomised grades offer better compressibility, while a trade-off exists with green strength.

Ferrous graphite influences is, in this case, moderate or negligible.

A rather complex, temperature-dependent relationship exists between the base iron and graphite granulometry. A coarser graphite will lead to less growth, especially at 880°C, with better dimensional precision. At this sintering temperature, it also yields better mechanical properties, while, at 1000°C, a finer graphite improves carbon dissolution and thus strength. The new WA 1 grade delivers a dimensional change close to 0%, the highest observed radial crushing strength K, and deformation at failure 8%.

Micro-hardness and microstructure analysis highlighted how the rate of carbon diffusion is controlled by the base iron, graphite granulometry and sintering temperature. While at low temperature the graphite particle size is of little relevance, at higher temperature it determines the depth of carbon diffusion and thus final hardness.

Dissimilar amounts of pearlite were observed, with the highest amount for WA 1 grade and lowest for Sponge I. Dissimilar amounts of impurities in particular, silicon, were proposed to be the main reason behind these differences. In practical terms, this means that, if a lower hardness is targeted in order to reduce the wear on sizing dies, a coarser graphite and/or a lower sintering temperature are to be considered, especially with WA 1. If a very coarse graphite is already being used, these changes were not found to be effective.

References
[7] C Shade and T Murphy, Micro-structure and mechanical properties of PM steels with Silicon and Vanadium, MPIF Congress, Nashville 2012 proceedings

Acknowledgements
A special thanks goes to Dr R Gilardi of Imerys for providing the graphite powder samples.

Authors
Matteo Zanon1 Italiarampi1 Alessandro Breda1 Francesco Bortolotti1 Enrico Tomaello1
1Pometon S.p.A., Italy
2University of Padova, Italy
Email: research@pometon.com
Development Prizes: New Design

Development of a low-cost sintered ravigneaux planetary carrier

A Development Prize was awarded to Toyota Motor Corporation for a ravigneaux planetary carrier for a new high-efficiency automatic transmission. It consists of a PM carrier A, a PM carrier B, a steel sleeve and a steel hub (Fig. 1). The carrier design was optimised for PM to provide a significant reduction in manufacturing costs compared with forging and stamping. The stress to be applied to the ravigneaux carrier was reduced to below the fatigue limit by optimising the shape of the part at the points where stress was concentrated. The average density of this PM carrier is 7.05 g/m³. For forming of the different height of the legs, green machining was adopted to provide further cost benefits.

The two PM carriers A, B (of composition Fe-2Cu-0.9%C) and a steel sleeve, having an optimal joint design, were brazed during the sintering process. After brazing, the steel hub was welded to the sleeve. For the purpose of cost reduction, a completely automatic production line from compaction to machining was developed and the number of operators was halved. In order to improve productivity, adjustment of compacting conditions was abolished through the introduction of a filling method to stabilise filling density, and tool changeover time was reduced to less than 160 seconds.

These developments contributed to substantial improvements in cost competitiveness. It is expected

Innovation drives success in the Japan Powder Metallurgy Association’s 2017 awards

The winners of this year’s Japan Powder Metallurgy Association (JPMA) PM component awards highlight the continuing developments being made to further expand the range of applications for our technology. The number of components recognised for their innovation suggests that there continues to be the potential for new applications in the automotive sector, particularly in the latest generation of highly efficient international combustion engines and automatic gearboxes.

Fig. 1 Toyota Motor Corporation received a Development Prize in the New Design category for its low-cost sintered ravigneaux planetary carrier
In vibration. - gear teeth, which is a part of a VTC non-circular - in this case, triangular circular gear teeth pulley with high-accuracy non-circular external teeth (the non-circular gear teeth were identified as factors affecting external teeth accuracy. These were resolved by optimising the sizing conditions. Four oil-passing slots were formed by long and thin side cores in the tool-set; however, this led to the breakage of these side-cores after the compaction of around 500 parts. Therefore, two measures were taken; improvements were made to the side-core design to enhance rigidity, and side-core extraction during green compact ejection was delayed.

Eventually, the mass production of large parts having high accuracy non-circular gear tooth surfaces was achieved by optimising production conditions. It is expected that, in the future, demand for sintered pulleys with non-circular gear teeth for VCTs will expand greatly, particularly in Europe.

Development of a sprocket drive for a low fuel consumption automatic transmission (AT) oil pump

Diamet Corporation was awarded a prize for its development of a sprocket drive for a next-generation fuel consumption AT oil pump (Fig. 3). From a cost point of view, an Fe-Cu-C based sintered sprocket with 6.8g/cm$^3$ density was used for this unit, instead of a fine-blanked sprocket.

Although induction hardening treatment is often used for gear tooth surface hardening, post-processing is required since dimensional accuracy deteriorates. In order to achieve both mechanical strength and low cost, Diamet has tried to improve the dimensional precision of an as-induction hardened body.

By setting the sizing conditions to minimise residual stress, it was possible to reduce the deformation during induction hardening and to achieve the required parallelism, with a dimensional accuracy of 50 µm, without post-processing.

The next-generation of AT units are expected to see an expansion of production volumes in the future thanks to their superior fuel consumption and further expansion of demand for the sintered parts can therefore be expected.

Development Prizes: New Materials

High wear resistant Fe-sintered alloy slider for high-speed trains

A prize was awarded to Fine Sinter Co. Ltd. for the development of a high wear resistant slider for high-speed trains (Fig. 4). The slider, or contact strip, is designed to collect electric currents and transmit them to train vehicles through a pantograph from the trolley wire. The basic requirements for the slider are high wear resistance and a low level of attack on the trolley wire. Among many expandabilities in railway vehiciles, the slider is most frequently replaced and, consequently, represents one of the highest costs in train maintenance. Recently, increases in train running speeds have made it necessary to improve the wear resistance of sliders at high speeds.

The aim of this development was to significantly decrease slider wear and to reduce the level of attack on the trolley wire, through the provision of good lubrication, and to maintain good mechanical properties. In order to increase wear resistance in the high-speed range, while maintaining good lubrication and high mechanical properties, a MnS-containing, free-cutting Fe powder was used as the matrix and a complex mixture of Fe-based and Cr-based hard particles was added. In addition, by avoiding the sulfurisation treatment used in conventional sliders, an improvement of more than 40% on lead-times was achieved without any cost increase. A wear test at 200 km/h relative running speed found that slider wear was improved by 38% and the level of wear on the trolley wire was equal to or better than that of a conventional slider.

High wear resistant Fe-sintered alloy sliders for high-speed trains

Fig. 4 High wear resistant Fe-sintered alloy sliders for high-speed trains

Development of an Fe-Cu system oil-impregnated sintered bearings with excellent high pressure resistance and wear resistance

A prize was awarded to Fine Sinter Co. Ltd. for the development of a bearing that is designed to form part of the armature used in an electronically controlled wiper motor, as a typical application example (Fig. 5). In order to improve pressure and wear resistance, the company targeted excellent sliding and lubricating performance with higher hardness and strength than conventional Fe-Cu system oil-impregnated sintered bearings.

For better sliding characteristics, the developed bearing material incorporated a large amount of copper (exceeding the solubility limit in iron) and had a microstructure with a large fraction of copper phases.

In addition, as a result of optimising the raw material particle size of the copper powder and graphite and the sintering conditions, the material has become an Fe-Cu system composite structure, in which undissolved copper phases and free graphite are dispersed and distributed, resulting in high hardness and high strength. Furthermore, Diamet succeeded in securing the dimensional accuracy of the sizing process by making the dimensional change rate in sintering almost zero (< 0.1%).

The developed bearing material is said to achieve a wear resistance of more than four times that of a conventional bearing, under the electronically controlled wiper motor operating conditions. The material has high hardness and high strength, but also has excellent lubricating properties, sliding performance and dimensional accu-
Diamet stated that there is no other example of this type of bearing material in the marketplace.

**Effort Prizes**

**Development of a gasoline direct injection mechanism part ‘guide, fuel pump lifter’**

An effort prize was awarded to Sumitomo Electric Industries Ltd. for the development of a ‘Guide, fuel pump lifter’ used in a boosting mechanism for gasoline direct injection engines (Fig. 6). In the future, the introduction of this booster mechanism to engines will expand globally, rising to around 150,000 engines per month. Therefore, reducing the cost of each part in this mechanism was actively considered.

Specifically, the cost of the PM guide lifter part was reduced by 30%, compared with that of a cast part, by minimising machining allowance while selecting optimal material and production process for the satisfaction of the required specifications. The Fe-Cu-C system was chosen as the material on the basis of its performance and price competitiveness. On the basis of the results of endurance tests carried out by the customer, it was determined that the heat treatment process could be omitted. The maximum level of near net shape was realised, by divided upper and lower punches to make holes, which satisfied the weight reduction requirement. The knock hole pitch and the inside diameter of the part were machined due to the high dimensional accuracy requirement.

As a result, the developed PM guide, fuel pump lifter parts were installed in a gasoline direct injection mechanism pump for the first time in Japan.

**Development of a thin sprocket without a sizing process**

Diamet Corporation gained a further award for the development of a sprocket with a diameter of over 100 mm and a 3.8 mm tooth thickness, for use in a Variable Valve Timing (VVT) system (Fig. 7). The development goals were to hold the same dimensional accuracy as a conventional sprocket and to offer lower cost than a fine-blanked sprocket.

To achieve the cost target, Diamet improved the dimensional accuracy of the sintered compact and eliminated the sizing process by optimising the tooling arrangement, powder feeding conditions and sintering setter shape. Magnetic flaw detection was also eliminated, through the introduction of a ‘touchless’ line from compaction to the sintering process.

www.jpma.gr.jp

---

**The JPMA awards archive**

The Japan Powder Metallurgy Association’s website features information on all of the association’s award winning Powder Metallurgy parts dating back to 2004.

www.jpma.gr.jp/en/about/prize.html

---

**Many thanks**

for the exciting and successful days at formnext 2017!

We look forward to seeing you at formnext 2018.

Where ideas take shape.

@ formnext_expo
# formnext
Frankfurt, Germany, 13 – 16 November 2018
formnext.com
Investigation of post-HIP interface formation between powder Astroloy and steel capsule

The first paper, from Emilio Bassini, Valeria Vola, Sara Biamino and Daniele Ugues (Politecnico of Torino, Italy), Massimo Lorusso (CSFT, Italy), R Ghisleni (INSTM, Italy), Gianfranco Vallillo (Avio Aero, Italy) and Benjamin Picque (Aubert & Duval, France), focused on interface reactions between Astroloy powder and the steel capsule.

A number of aircraft engine manufacturers are seeking to enhance turbine performance by raising operating temperature. The solution to this objective involves the use of nickel-based superalloys with a high volume fraction of reinforcing particles. The higher the amount of γ (Ni3Al), the typical reinforcing system in nickel-based superalloys, the higher will be the thermal stability of components, but the lower will be their forgeability. This technological difficulty can be solved by changing the manufacturing route from casting or forging to a Powder Metallurgy route. In particular, Near Net Shape HIP (NNSHIP) and Net Shape HIP (NSHIP) are outstanding process alternatives.

In the reported study, Astroloy powders were consolidated by Hot Isostatic Pressing (HIP). The authors investigated the influence of isostatic pressure on phase transformations and suggested the use of glass container encapsulation to improve density distribution in stainless steel components.
Assess the compositional variations

Under the ICP, Astroloy spherical powders are still visible. This superalloy is very fine. In Fig. 2b, a dotted line was used to separate an upper martensite band from the rest of the CB. Below the martensite band and the CFB, the ICP appears. This band was considered as the initial point of contact between steel and Astroloy at the start of HIP consolidation. This band is the Carbide Free Band zone, the formation of new phases, but also a modification of the γ precipitation, which is suppressed at critical points. The most important reason for these changes is to be found in the amount of titanium, aluminum and iron (coming from the steel and martensite) above the CFB [1].

EDS analysis showed that the ICP is characterised by carbides very rich in Ti, which, evidently, is faster to bond with C than is Cr, the other strong carbide forming element present. Thus, Cr is free to form carbides preferably in a deeper layer and at grain boundaries. The formation of new phases, but also a modification of the γ precipitation, which is suppressed at critical points. The most important reason for these changes is to be found in the amount of titanium, aluminum and iron (coming from the steel and martensite) above the CFB [1].

According to these experimental results, Astroloy recovers its nominal composition at around 70 µm below the ICP. However, the fast diffusion taking place at grain boundaries allows PPB network formation over a much deeper layer. These particles are detrimental to fatigue and creep resistance of the alloy and, thus, have to be eliminated. By summing the contributions of volume and hand, a sharp decrease in iron and a smaller increase in Al allows γ precipitation, though in a spherical shape, which is typical of a Ni-Fe based superalloy. After a transition zone, the γ begins to precipitate in cuboidal shape and passes from being very fine to coarser in form. Particle coarsening is due to the fact that, in this region, cooling rate after HIPping is lower. This microstructural condition is also observable in the bulk material.

Table 1 Chemical compositions of the Astroloy powder and steel capsule used during the HIP treatment [1]

<table>
<thead>
<tr>
<th>Element</th>
<th>Ni</th>
<th>Co</th>
<th>Cr</th>
<th>Mo</th>
<th>Al</th>
<th>Ti</th>
<th>Fe</th>
<th>Zr</th>
<th>N</th>
<th>Mn</th>
<th>C</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt %</td>
<td></td>
</tr>
<tr>
<td>Steel</td>
<td>17.8</td>
<td>14.3</td>
<td>5.6</td>
<td>4.6</td>
<td>3.7</td>
<td>0.2</td>
<td>0.05</td>
<td>0.004</td>
<td>-</td>
<td>0.014</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bal.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>0.16</td>
<td>0.040</td>
<td>-</td>
</tr>
</tbody>
</table>

Fig. 2 a) HIP sample after Glyceregia etching observed with optical microscopy; b) FESEM image reveals the presence of martensite above the CFB [1]

Fig. 3 a) Complete elemental concentration profile across the interface expressed in wt %; b) detail for Ti and Al content [1]

Fig. 4 Evolution of γ’ from the ICP zone towards deeper layers [1]
Influence of isostatic pressure on phase transformations in 17-4 PH

Next, a paper from Hans Magnusson and Joacim Hagstroem (Svera KiMAB AB, Sweden), Mats Persson (Hogan AB, Sweden), Bjorn-Olof Bengtsson (Carpenter Powder Products, Sweden), Stefan Sahlstedt (Quintus Technologies, Sweden) and Ingrid Bengtsson (Bodycote Hot Isostatic Pressing, Sweden) examined the influence of isostatic pressure on phase transformations in 17-4 PH stainless steel. 17-4 PH is a martensitic, precipitation hardened stainless steel. It is often used in applications that require good corrosion resistance and high strength. The mechanical properties rely on the precipitation of nanometre-sized copper particles, together with the martensitic transformation. The copper particle precipitation requires ageing at around 482°C (999°F). These particles can quickly overage at higher temperatures and the high-temperature usage of this material is therefore limited.

The reported study investigated how phase transformation is influenced by isostatic pressure. The composition of the 17-4 PH powder, produced by Carpenter, is given in Table 2. This powder was HIPed by Bodycote using a standard cycle for steels, 1000 bar, 1150°C and 2 hours. The HIPed and fully compacted material was then given two different heat treatments: Normal atmosphere, solution treated at 1 atm and quenched in water, and HIP at 2000 bar, 1150°C and 2 hours. The HIPped material was then given two different heat treatments: Normal atmosphere, solution treated at 1 atm and quenched in water, and HIP at 2000 bar, 1150°C and 2 hours. The HIPped and fully compacted material was then given two different heat treatments: Normal atmosphere, solution treated at 1 atm and quenched in water, and HIP at 2000 bar, 1150°C and 2 hours.

Results from hardness measurements are presented in Table 3. These measurements indicated that hardness increased 40-50 HV for all materials hardened under high isostatic pressure and that hardness increased 90 HV on ageing for all annealed states. The hardness in the as-received sample was higher than in the quenched state. This could be due to a relatively slow cooling in the conventional HIP unit, compared to the rapid cooling in the controlled HIP-cycle (as quenched) and this cooling rate could have caused precipitation during cooling.

Martensite start temperatures (M_s) were evaluated by dilatometry M_s was measured as 159°C at 5°C/s cooling rate and 143°C at 100°C/s. The martensite transformation was finished at 45°C. M_s is low, but still sufficiently high to harden when cooling to room temperature. The as-HIPed material used as the starting condition for the heat treatments is shown in the EBSD image in Fig. 5a. The HIPped and cooled material was then given two different heat treatments: Normal atmosphere, solution treated at 1 atm and quenched in salt water, and HIP at 2000 bar, 1150°C and 2 hours. The HIPped and cooled material was then given two different heat treatments: Normal atmosphere, solution treated at 1 atm and quenched in salt water, and HIP at 2000 bar, 1150°C and 2 hours.

These measurements indicated that a total thickness of 500 μm below the interface can be identified as the final required overstock.

The authors noted that previous studies have been reported in the literature and these have shown experimentally that isostatic pressure lowers M_s temperature. These previous experiments were carried out in a high-pressure chamber with up to 60 kbar pressure and showed that M_s is lowered by approximately 4°C per kbar pressure. These pressures are much higher than in typical HIP units, where the pressure is limited to 10 kbar. Phase transformations that result in an increase in volume will not be favoured under hydrostatic pressure. A high hydrostatic pressure will favour those crystalline structures, which have the smallest molar volumes. A phase transformation from austenite to martensite will lead to an expansion of the lattice, requiring an additional driving force for the initiation of the transformation. This will be seen by EBSD for materials hardened by quench in salt water and in the HIP. Misorientation gradients larger than 2° are plotted in Fig. 6. The prior austenite grain sizes and the martensite packet sizes were similar for both materials. The misorientation distributions were also similar, but a very lowangle misorientations were studied, a small increase could be assigned to the HIP-hardened material.

To assess dislocation density, XRD evaluations were made. The amount of distortion can be evaluated with XRD by measuring the full width at half maximum (FWHM) and these results are presented in Fig. 7. For the hardened materials, it can be seen that the material hardened in HIP has a greater amount of distortion in the crystalline structure and this could be an indication of higher dislocation density and, therefore, harder material.

<table>
<thead>
<tr>
<th>Hardness, HV</th>
<th>As received HIPed</th>
<th>1030°C heated and quenched</th>
<th>1030°C heated + 482°C annealed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat treated in atmosphere</td>
<td>293</td>
<td>383</td>
<td></td>
</tr>
<tr>
<td>Heat treated in HIP</td>
<td>336</td>
<td>428</td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td>+43</td>
<td>+45</td>
<td></td>
</tr>
</tbody>
</table>

Table 3 Hardness measurements for 17-4PH hardened in both the HIP-unit and with traditional hardening with quench in saltwater [2]
as a lower Mₜ temperature at high pressure. As the Mₜ is lowered by hydrostatic pressure, the resulting martensite upon hardening will be finer and, therefore, of higher hardness.

A study on glass container encapsulation of 316L stainless steel powder during Hot Isostatic Pressing

Finally, a paper from Hosam ElRa’s group reported on the assessment of glass container encapsulation, as an alternative to the use of steel capsules, in the HIPping of 316L stainless steel powder. The authors had previously demonstrated that metal containers induce Mises stresses in compacts, due to the rigidity of the container walls. These stresses can cause a nonhomogeneous distribution of relative density over the compact. Metal containers reduce the applied HIPping pressure transmitted to the compacts, but the authors proposed that glass can be used as an encapsulation material to avoid these disadvantages. The reported work studied the effect of glass container encapsulation on densification and deformation behaviour of 316L stainless steel powder and, also, investigated the effect of the glass container on the Mises stress, hydrostatic stress and relative density distributions over the compacts.

Water atomised 316L stainless steel powder, with the composition shown in Table 4, a theoretical density of 7.95 g/cm³ and an average particle size of 8 µm was used in the study. The powder was filled in commercial borosilicate glass tubes of 44 mm in height, 28 mm in outer diameter and 2 mm in thickness. The container was vibrated to attain an initial relative density of 0.45 and was degassed through the ventilation tube for 4 h at 290°C. The ventilation tube was then sealed under vacuum with an oxy-propane torch.

HIPping was carried out using the conditions shown in Fig. 8, with the samples being supported on Saffil preforms. Numerical modelling of the HIP process was carried out using the finite element analysis program Abaqus – FEA and implementing constitutive equations previously derived by the authors.

Fig. 9 shows a comparison between experimental data and finite element calculations for the final shape of the 316L stainless steel compact [3].

<table>
<thead>
<tr>
<th>Chemical Composition</th>
<th>Fe</th>
<th>Cr</th>
<th>Ni</th>
<th>Mo</th>
<th>Si</th>
<th>Mn</th>
<th>Cu</th>
<th>P</th>
<th>S</th>
<th>C</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt.%</td>
<td></td>
</tr>
<tr>
<td>Balance</td>
<td>15.7</td>
<td>11.3</td>
<td>2.07</td>
<td>0.86</td>
<td>0.09</td>
<td>0.03</td>
<td>0.026</td>
<td>0.002</td>
<td>0.019</td>
<td>0.35</td>
<td></td>
</tr>
</tbody>
</table>

Table 4 Chemical composition of 316L stainless steel powder [3]

Fig. 10 Finite element calculations for hydrostatic stress distributions for samples HIPed in 304 stainless steel containers with different wall thicknesses, (a) without a container, (b) 0.1 mm, (c) 0.4 mm, (d) 1.24 mm, (e) 2 mm and (f) in a glass container for 240 min under 30 MPa pressure at 925°C [3]

Fig. 11 Finite element calculations for the Mises stress distributions for samples HIPed in 304 stainless steel containers with different wall thicknesses, (a) without a container, (b) 0.1 mm, (c) 0.4 mm, (d) 1.24 mm, (e) 2 mm and (f) in a glass container for 240 min under 30 MPa pressure at 925°C [3]

Fig. 12 Finite element calculations for relative density distributions for samples HIPed in 304 stainless steel containers with different wall thicknesses, (a) without a container, (b) 0.1 mm, (c) 0.4 mm, (d) 1.24 mm, (e) 2 mm and (f) in a glass container for 240 min under 30 MPa pressure at 925°C [3]
Fig. 10 shows finite element calculations for hydrostatic stress distributions for samples HIPed in various 304 stainless steel containers with different wall thicknesses, (a) without a container, (b) 0.1 mm, (c) 0.6 mm, (d) 1.24 mm, (e) 2 mm and (f) in a glass container for 240 min under a pressure of 30 MPa at 925°C. Non-uniform distribution of hydrostatic stress in the compacts was observed, due to the rigidity of the metal container. For the compact modelled without a container (a theoretical result), this had a uniform distribution of hydrostatic stress. This uniform distribution of hydrostatic stress can be also noted in the compact HIPed in the glass container. Figs. 11 and 12 show finite element calculations for the Mises stress distributions and relative density distributions in the samples HIPed with the same container options as in Fig. 10. The Mises stress was induced in the compacts HIPed in metal containers, due to the container wall rigidity, and, therefore, a nonhomogenous distribution of relative density over the compacts was noted. On the other hand, the glass container did not induce Mises stresses in the compacts. It was concluded that the glass containers transmitted all of the applied isostatic pressure to the compacts and the induced Mises stress could be neglected.

From Figs. 10, 11 and 12, it can be noted that the compacts HIPed in glass containers showed homogenous densification and isotropic deformation behaviour.

References

[1] Investigation of post HIP interface formation between powder Astroloy and steel capsule, Emilio Bassini et al., as presented at Euro PM2017, Milan, Italy, October 1-5, 2017, and published in the proceedings by the European Powder Metallurgy Association


Author

Dr David Whittaker
Tel: +44 1902 338498
Email: whittakerd4@gmail.com

Proceedings


www.epma.com

Euro PM2018

The Euro PM2018 Congress & Exhibition will take place in Bilbao Exhibition Centre, Bilbao, Spain, from October 14-18, 2018.

www.europm2018.com

With the constant emergence of new technologies, machines, and materials, additive manufacturing is evolving so quickly that if you do not stay up to speed, you will be left behind. RAPID + TCT provides everything you need to know about 3D technologies, all under one roof. Experience hundreds of hands-on exhibits, groundbreaking product announcements, education from the industry’s most respected experts, and unparalleled networking.

WHY GO ANYWHERE ELSE?
IT’S ALL AT RAPID + TCT 2018.

Visit rapid3Devent.com to learn more.
Iron-copper-carbon materials remain the predominant system for manufacturing Powder Metallurgy parts. However, large pores left behind when the copper addition melts and diffuses into the iron matrix, can lead to variability in dimensional process control, an important issue which can affect PM’s major competitive advantage in offering net shape capability.

Elemental admixing is the simplest and most common method used to distribute the copper addition into the base iron powder to form a mix before compaction and sintering. However, because the addition particles are free to move, admixed materials are more prone to segregation.

A group of three papers, presented at POWDERMET2017, discussed alternative means of incorporating the copper additions in feedstocks, with a view to eliminating this segregation problem.

Improved precision of iron-copper-carbon materials

In this paper, presented by Sarah Ropar (North American Höganäs, USA) and co-authored by her colleagues Roland Warzel III and Bo Hu, the alternative process of diffusion alloying was studied. Diffusion-alloyed powders involve the annealing of the mix so that the alloying additions partially diffuse into the iron particles and, therefore, eliminate segregation.

Fig. 1 POWDERMET2017 took place at the Bellagio Hotel in Las Vegas, USA
The MPIF standard material systems used for the reported study were FC-0200 (0% C), FC-0200 (0.2% C), FC-0205 (0.6% C) and FC-0208 (0.8% C). Within each material system, four different sources of copper were selected for evaluation. The copper sources were: elemental Cu-165 (ACuPowder), a conventional PM grade; elemental Cu-200 (ACuPowder), a conventional PM grade with finer particle size than the Cu-165 grade; diffusion-alloyed D.ACu (Höganäs, Sweden), and diffusion-alloyed D.ACu Improved (Höganäs, Sweden). The average particle size distribution for each copper source is shown in Table 1. The compressibility curves for the FC-0208 mixes are shown in Fig. 2. FC-0208 was chosen as this is the most common material system for PM applications. Compared with the admixed materials with elemental copper, the diffusion-alloyed copper materials provided no significant difference in compressibility. With the diffusion-alloyed copper grades, the compressibility of the material containing the D.ACu Improved was comparable to the material with D.ACu. The measured levels of apparent hardness, yield strength, tensile strength and elongation for each material system after sintering are shown in Tables 2–5. As the sintered carbon level increased, the hardness and strength increased for the iron-copper-carbon materials, regardless of the source of copper. Although the hardness of materials were similar within the same sintered carbon level, the diffusion-alloyed materials consistently showed slightly higher strengths compared with the materials containing the elemental copper. The elongation values for the elemental copper decreased as the sintered carbon level increased, while the elongations for the diffusion-alloyed materials remained fairly similar. Fig. 3 shows the relationships between dimensional change and sintered carbon level. All materials showed a growth in dimensional change regardless of the carbon level. With the carbon level increased from 0.2% C, growth was reduced. Compared with the other material groups, the D.ACu Improved had significantly less growth when no carbon was added (0%) or at the low sintered carbon level (0.2%). Overall, the D.ACu Improved material exhibited less effect on dimensional change from the carbon addition compared with the other material groups. A dimensional change study was performed in order to assess the dimensional change between each of the materials and to develop an understanding of the consistency of the dimensional change over time. The variation in dimensions was evaluated across all graphite additions, as shown in Fig. 4. The elemental copper (Cu-165 and Cu-200) containing materials showed similar variations in dimensional changes. The diffusion-alloyed materials had less variation compared to the materials with elemental copper. Compared to the D.ACu material, however, the D.ACu Improved material showed significant improvement in reducing the variation in dimensional changes. For the same graphite addition (Fig. 5), the variations for the materials containing the finer elemental copper (Cu-200) were higher compared with the materials with coarse elemental copper (Cu-165). Both the D.ACu and D.ACu Improved showed less variation in the dimensional changes, i.e. more consistency in dimensional changes, compared with the admixed material with the elemental copper grades.

<table>
<thead>
<tr>
<th>Cu Source</th>
<th>Cu (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu-165</td>
<td>80</td>
</tr>
<tr>
<td>Cu-200</td>
<td>45</td>
</tr>
<tr>
<td>D.ACu</td>
<td>*150</td>
</tr>
<tr>
<td>D.ACu Improved</td>
<td>*150</td>
</tr>
</tbody>
</table>

*Note: Average PSD for base iron

Table 1 Average particle size distribution (PSD) for the various copper sources [1]

<table>
<thead>
<tr>
<th>MPIF Code</th>
<th>Type of Cu</th>
<th>Sintered C (%)</th>
<th>HRB</th>
<th>TS (MPa)</th>
<th>YS (MPa)</th>
<th>Elongation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC-0200</td>
<td>Cu-165</td>
<td>0.008</td>
<td>21</td>
<td>228</td>
<td>169</td>
<td>6.5</td>
</tr>
<tr>
<td>FC-0200</td>
<td>Cu-200</td>
<td>0.007</td>
<td>22</td>
<td>228</td>
<td>171</td>
<td>6.5</td>
</tr>
<tr>
<td>FC-0200</td>
<td>D.ACu</td>
<td>0.007</td>
<td>25</td>
<td>228</td>
<td>174</td>
<td>3.2</td>
</tr>
<tr>
<td>FC-0200</td>
<td>D.ACu Improved</td>
<td>0.006</td>
<td>29</td>
<td>234</td>
<td>181</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Table 2 Sintered properties for FC-0200 mixes (0% Sintered C) [1]

<table>
<thead>
<tr>
<th>MPIF Code</th>
<th>Type of Cu</th>
<th>Sintered C (%)</th>
<th>HRB</th>
<th>TS (MPa)</th>
<th>YS (MPa)</th>
<th>Elongation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC-0200</td>
<td>Cu-165</td>
<td>0.28</td>
<td>54</td>
<td>331</td>
<td>261</td>
<td>4.3</td>
</tr>
<tr>
<td>FC-0200</td>
<td>Cu-200</td>
<td>0.28</td>
<td>54</td>
<td>331</td>
<td>267</td>
<td>4.3</td>
</tr>
<tr>
<td>FC-0200</td>
<td>D.ACu</td>
<td>0.29</td>
<td>53</td>
<td>338</td>
<td>272</td>
<td>2.2</td>
</tr>
<tr>
<td>FC-0200</td>
<td>D.ACu Improved</td>
<td>0.28</td>
<td>54</td>
<td>352</td>
<td>274</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Table 3 Sintered Properties for FC-0200 mixes (0.2% Sintered C) [1]

<table>
<thead>
<tr>
<th>MPIF Code</th>
<th>Type of Cu</th>
<th>Sintered C (%)</th>
<th>HRB</th>
<th>TS (MPa)</th>
<th>YS (MPa)</th>
<th>Elongation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC-0205</td>
<td>Cu-165</td>
<td>0.66</td>
<td>78</td>
<td>435</td>
<td>385</td>
<td>1.1</td>
</tr>
<tr>
<td>FC-0205</td>
<td>Cu-200</td>
<td>0.67</td>
<td>74</td>
<td>490</td>
<td>389</td>
<td>3.2</td>
</tr>
<tr>
<td>FC-0205</td>
<td>D.ACu</td>
<td>0.67</td>
<td>77</td>
<td>503</td>
<td>394</td>
<td>3.2</td>
</tr>
<tr>
<td>FC-0205</td>
<td>D.ACu Improved</td>
<td>0.66</td>
<td>78</td>
<td>510</td>
<td>394</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Table 4 Sintered properties for FC-0205 mixes (0.6% Sintered C) [1]

<table>
<thead>
<tr>
<th>MPIF Code</th>
<th>Type of Cu</th>
<th>Sintered C (%)</th>
<th>HRB</th>
<th>TS (MPa)</th>
<th>YS (MPa)</th>
<th>Elongation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC-0208</td>
<td>Cu-165</td>
<td>0.88</td>
<td>84</td>
<td>552</td>
<td>442</td>
<td>1.1</td>
</tr>
<tr>
<td>FC-0208</td>
<td>Cu-200</td>
<td>0.88</td>
<td>84</td>
<td>552</td>
<td>448</td>
<td>3.2</td>
</tr>
<tr>
<td>FC-0208</td>
<td>D.ACu</td>
<td>0.86</td>
<td>85</td>
<td>572</td>
<td>448</td>
<td>3.2</td>
</tr>
<tr>
<td>FC-0208</td>
<td>D.ACu Improved</td>
<td>0.87</td>
<td>85</td>
<td>579</td>
<td>481</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Table 5 Sintered properties for FC-0208 mixes (0.8% Sintered C) [1]
more copper was diffused into the iron matrix in the D.ACu Improved material. If copper segregation occurs in admixed materials, the large copper particles or agglomerates can cause variation in dimensions or a shift in the properties. When using copper diffusion-bonded material, copper segregation can be eliminated and the diffusion of copper into the iron matrix is more consistent, leading to reduced variation in dimensional changes.

The analysis of the status of copper diffusion in the iron matrix explains why the copper diffusion-bonded materials have less variation in dimensional changes and higher elongation than the elemental copper admixed materials. With more copper diffused into iron particles rather than concentrated at the grain boundaries, the distribution of copper in the iron matrix becomes more homogeneous and makes the matrix more homogeneous, resulting in more stable dimensional changes.

Improved diffusion-bonded copper alloy for improved dimensional change and precision of PM steel parts

A second paper, this time submitted by a PM parts maker rather than a powder supplier, also focused on comparisons between elemental admixed copper materials and diffusion alloyed materials. This paper was presented by Cody Kajokoski (Engineered Sintered Components, USA) and was co-authored by his colleagues Heron Rodrigues and Mike Follard.

The material variants compared in this study all complied with the FC-0208 specification (iron, 2% copper and 0.8% carbon). The breakdown of the alloying additions is shown in Table 6. The five different copper sources comprised a standard and a fine elemental admixed addition and three diffusion alloyed materials. D.ACu and improved D.ACu were based on an atomised base iron powder and were as discussed in the previous paper; D.Cu, on the other hand, was based on a sponge iron powder.

An outer gerotor was selected as the test component in the reported study. Fig. 7 shows the schematic diagram of the component and the dimensions that were measured. This type of component was selected for the study because it offers a variety of dimensions that can be measured to determine the significance of the variation in the dimensional change from mix to mix. Between the pin diameter, major and minor inner diameter, outer diameter and outer diameter roundness were all measured on this component in the green state and in the as-sintered condition. Fig. 8 shows where between the pin diameter (a-e) dimensions were measured. Hardness was also checked in the as-sintered condition.

Test components were compacted to an overall density of 6.8 g/cm³ and were sintered at 1160°C (2120°F) in an atmosphere of 93% nitrogen and 7% hydrogen and with a normal cooling rate of 0.5°C/s (1°F/s). The total dimensional changes (DC) of all of the mixes used in the study are presented in Fig. 8. Ele Cu and D.Cu had the highest amount of total DC on the OD compared to the other mixes. ID.ACu had the lowest amount of total dimensional change compared to the other mixes. ID.ACu and D.ACu had the highest amount of total DC on the OD compared to the other mixes. D.ACu also had a high total DC relative to Ele Cu and D.Cu. A similar packing order of these additions types was also revealed in studies of the total DCs for the minor ID and major ID.

In relation to dimensional precision, Fig. 8 shows the standard deviation of the observed dimensional change in the minor ID. Similar observations were also made in relation to the precision of the major ID i.e. the improved D.ACu and the D.Cu alloying variants showed the lowest standard deviation for both the minor and major ID.

Results for the between the pin diameter were as shown in Fig. 10. In this case, the improved D.ACu had the lowest standard deviation, but the D.Cu had one of the highest standard deviations. The current D.ACu had the second lowest standard deviation. Fig. 11 shows the standard deviations for the OD and similar observations were made for OD roundness. In both cases, the improved D.ACu
yields the lowest standard deviation followed closely by the D.Cu. Fig. 12 shows the results of the as-sintered hardness measurements. The hardness values for all the alloying variants fell between 75 and 80 on the Rockwell B scale (HRB), demonstrating that there was no loss of mechanical properties when using the improved D.ACu vs. currently used materials.

Based on the results of this study, it was observed that the improved D.ACu enhanced the standard deviation (precision) of each characteristic measured on the component. The powders were analysed, by using scanning electron microscopy (SEM) and electron dispersive spectroscopy (EDS), in order to determine why the improved D.ACu produced a lower standard deviation relative to the other materials. The element maps show a difference in copper particle size and copper particle distribution throughout the powder samples. ID.ACu and ID.ACU’ have the smallest copper particle size and the best copper particle distribution compared to the other materials.

3. Overall conclusions from the reported study

1. Total dimensional change is influenced by copper particle size. The large copper particles will induce swelling during sintering, but only in localised areas of the component. This will lead to an increase in distortion, but will inhibit uniform growth. Smaller copper particles will swell the component more uniformly and this in turn leads to more growth.

2. Precision is influenced by the distribution of copper particles throughout the powder. A more uniform distribution of copper particles will lead to less variation from part to part during the sintering process.

3. The alloying method of copper is important in influencing both total dimensional change and precision of a component during compaction and sintering. Low total dimensional change does not translate to better precision.

Production experience with high consistency FC-0208 material made using advanced bonding technology

The final paper reported here focused on the benefits of using bonded pre-mixing, rather than diffusion alloying, as a means of eliminating copper segregation in an FC-0208 material. The paper was presented by Kylan McQuaig (Hoeganaes Corporation, USA) and co-authored by his Hoeganaes colleagues Bridget Reider and Francis Hanjgje, as well as Suresh Shah, Gerry Wewer and Gregory Fallaur of American Axle & Manufacturing Inc., USA.

Bonded pre-mixing has emerged in recent years as a viable alternative to diffusion alloying and involves the incorporation of an organic binder-lubricant addition, which acts both to chemically bind the alloying additions to the base iron powder and to serve as the pressing lubricant. The development and evaluation of the concept in the context of dimensional stability of Fe-Cu-C materials has been the subject of an extensive collaboration between the two companies and this paper was the latest in a series of publications by the team and reported on a detailed and extensive assessment in a production environment.

In a previous publication, it had been reported that improved sintered DC response of FC-0208 materials was realised by utilising a fine copper addition (15 µm) in combination with chemical bonding of the pre-mix additives. The fine copper addition showed two benefits. Firstly, proper dispersion of the finer copper eliminates the large voids that result from the melting of ‘large’ copper particles. Secondly, chemical bonding of the fine pre-mix additives ensures that the premix homogeneity achieved during the premixing operation is maintained through powder transport and, ultimately, delivery into the die cavity. One additional key observation was the concept of sintered difference from standard (DFS) as the metric to evaluate stability of sintered DC from lot-to-lot.

In this reported study, the initial laboratory-based work at Hoeganaes Corporation investigated the effects of copper addition type and premixing alternatives. In this phase of the study, four 500 lb (227 kg) premixes were prepared, as detailed in Table 1. In all premixes, the base iron utilised was Hoeganaes Corporation Ancorsteel 1000C, the carbon addition was 0.72 wt.% natural graphite and the lubricant addition was 0.75 wt.% EBS. Once the laboratory-sized premixes were prepared, they were evaluated for basic powder properties of apparent density and flow, compressibility, sintered dimensional change and sintered TR strength. One additional test performed on each premix was elastrometry to measure the potential dusting resistance of each premix. This test uses a steady flow of nitrogen gas that fluidises a column of powder with the objective of segregating the low density or small particle size premix additives. High dusting resistance implies a reduced tendency to segregate during transport and subsequent powder handling during PM part production.

The production scale testing used the part shown in Fig. 13. This VVT part had three levels with a major sprocket diameter of 5.3 in (134.6 mm), an inner diameter of 3.387 in (86 mm) and an overall height of 0.8 in (20 mm). Part mechanical requirements necessitated that the sprocket flange region maintained a sintered density of ~6.9 g/cm³, whereas the specification of the major long hub (Fig. 13b) was an overall green density of ~6.8 g/cm³. The major short hub was formed by a fixed step in the upper punch (Fig. 13a). Compaction was performed on a mechanical press and sintering was carried out nominally at 2050°F (1121°C) for ~25 minutes at temperature in a 95 vol.% nitrogen / 5 vol.% hydrogen atmosphere. All material used in the production testing was an MPF FC-0208 powder produced via Hoeganaes’ proprietary bonded premixing processing. During the course of this production scale study, approximately twenty lots of material were evaluated, representing greater than 800,000 lb (363,000 kg) of supplied material, or approximately six months of actual part production. Additional production testing

Table 7 Initial pre-mixes evaluating the effects of copper type and pre-mixing alternatives [3]

<table>
<thead>
<tr>
<th>Premixing alternative</th>
<th>Copper type</th>
<th>% Copper type addition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard premix</td>
<td>-150 µm</td>
<td>1.70</td>
</tr>
<tr>
<td>Standard premix</td>
<td>Diffusion bonded 20% copper master alloy</td>
<td>8.50 (1.70 total copper)</td>
</tr>
<tr>
<td>Ancorbonded</td>
<td>-150 µm</td>
<td>1.70</td>
</tr>
<tr>
<td>Ancorbonded</td>
<td>-15 µm</td>
<td>1.70</td>
</tr>
</tbody>
</table>
assessed the weight uniformity of as-compacted components by measuring thirty consecutive parts for each of two lots twice a day for three days of production. In the laboratory-scale testing, Table 8 presents the measured apparent density (AD) and flow of the four mixes evaluated. Conventional double cone blending of the standard copper and the diffusion bonded copper addition gave almost identical AD and flow. Chemical bonding of the standard copper increased the AD by approximately 0.1 g/cm³ with a 10% improvement in flow. Similarly, chemical bonding of the -15 μm copper powder increased the AD to ~3.2 g/cm³ with additional improvement in the flow. The higher AD lowers the fill required to produce a part and the improved flow permits the opportunity to increase press speed with no degradation of quality. The elutriation values presented in Fig. 14 demonstrate two trends. Firstly, graphite is more susceptible to dusting than copper. The density of graphite is 2.2 g/cm³ and the fine particle size of the additive does promote segregation during the processing of the premix and, ultimately, in the PM part. Copper has a density of approximately 8.1 g/cm³, nearly the same as iron. This, combined with the relatively coarser particle size distribution of the copper, does minimize the potential for segregation. It should be noted that both carbon and copper variations can result in variations in sintered DC. Therefore, the chemical bonding of the graphite is significant in eliminating this potential source of variation. The diffusion bonding of the copper as an alloying addition is not necessary to eliminate potential sources of variation. Dusting resistance of both the standard copper premix and chemically bonded fine copper show nearly identical copper values after completion of the elutriation testing.

Figs. 15, 16 and 17 present the sintered dimensional change, sintered TR strength and sintered apparent hardness for the four laboratory premixes, respectively. As seen in Fig. 15, the addition of the -15 μm copper powder promotes greater absolute sintered dimensional change. This results from the greater number of iron-copper particle contacts, thus promoting greater initial copper diffusion during the sintering process with the corresponding greater swelling of the iron lattice. This should not be considered a detriment, provided that within-lot and lot-to-lot consistency of the powder is maintained, so as to produce consistent sintering behaviour. Varying the particle size of the copper does not significantly affect the as-sintered strength or as-sintered apparent hardness of the FC-0208 premix.

Metallographic analysis of test samples prepared from each of the four laboratory premixes, in the as-polished and etched conditions, demonstrated that the melting of the relatively coarse copper (-150 μm) resulted in the presence of larger pores, occurring from the melting and subsequent diffusion of the large copper particles, whereas the melting of the -15 μm powder created correspondingly smaller and more rounded porosity. In the iron premix with the diffusion alloyed copper master alloy additive, the resulting porosity was intermediate between the coarse and fine copper particle size additions.

Table 8 presents the measured apparent density (AD) and flow of the laboratory prepared premixes. The significance of the smaller pore sizes, associated with the -15 μm copper premix addition, did not manifest itself in the static strength values shown in Figs. 16 and 17. However, axial fatigue testing of a production premix, utilising the -15 μm copper vs. the standard -150 mesh copper, was performed. Table 9 provides a summary of the axial fatigue testing [R = -1] of specimens compacted to a 7.0 g/cm³ green density. These data suggest that the inherently smaller porosity of the -15 μm copper resulted in an approximately 10% higher fatigue life for both the 90% and 95% confidence limits.

Additional metallography was performed on a production premix sintered at temperatures of 1037°C, that the interfaces between the copper and iron particles were less defined, possibly indicating some initial diffusion of the fine copper into the iron. At 1081°C, the amount of undiffused copper had decreased significantly and the remaining copper particles were in intimate contact with the iron particles. Lastly, at 1085°C, the copper was almost 100% diffused into the iron with only minor amounts of undiffused copper. This study illustrated the greater
The significance of this initial diffusion and dimensional change. Outputs from the initial study showed that, with proper selection of a testing standard and utilising chemical bonding with the fine copper, lot-to-lot variation was significantly reduced.

The newly reported production-scale study, the AD for the twenty lots examined showed a total variation of 0.04 g/cm³. The significance of this tight control of AD is reduced press adjustment between lots as received for production. Previous work had shown that the chemical bonding gave excellent consistency within lot. Therefore, the need for tooling adjustments is reduced, leading to improved overall productivity.

Absolute dimensional change and dimensional change DFS data were determined at both the premix production facility and at the parts producer. As expected, the absolute DC did vary between the two different sintering locations, but the overall range of absolute DC was 0.04 g/cm³. This iteration represents the potential density variation resulting solely from weight variation observed for each measured run. It is worth noting that the calculated density range [mean density variation was, at most, 0.04 g/cm³ for the part. This means that the potential DC variation from the maximum density variation is less than 0.005%, as shown in Fig. 18. This illustrates that DC is not just from potential chemical variations, but can also arise from variations in green density. To maintain the DC control required for a demanding application such as this W7 component with both rigid chemical control and part density will facilitate the required part performance. The consistency of both material AD and part density control required for a demanding application such as this WVT component, maintaining both rigid chemical control and part density will facilitate the required part performance.

In the newly reported production-scale study, the AD for the twenty lots examined showed a total variation of 0.04 g/cm³. The significance of this tight control of AD is reduced press adjustment between lots as received for production. Previous work had shown that the chemical bonding gave excellent consistency within lot. Therefore, the need for tooling adjustments is reduced, leading to improved overall productivity.

Absolute dimensional change and dimensional change DFS data were determined at both the premix production facility and at the parts producer. As expected, the absolute DC did vary between the two different sintering locations, but the overall range of absolute DC was 0.04 g/cm³. This iteration represents the potential density variation resulting solely from weight variation observed for each measured run. It is worth noting that the calculated density range [mean density variation was, at most, 0.04 g/cm³ for the part. This means that the potential DC variation from the maximum density variation is less than 0.005%, as shown in Fig. 18. This illustrates that DC is not just from potential chemical variations, but can also arise from variations in green density. To maintain the DC control required for a demanding application such as this WVT component with both rigid chemical control and part density will facilitate the required part performance. The consistency of both material AD and part density control required for a demanding application such as this WVT component, maintaining both rigid chemical control and part density will facilitate the required part performance.

In the newly reported production-scale study, the AD for the twenty lots examined showed a total variation of 0.04 g/cm³. The significance of this tight control of AD is reduced press adjustment between lots as received for production. Previous work had shown that the chemical bonding gave excellent consistency within lot. Therefore, the need for tooling adjustments is reduced, leading to improved overall productivity.

Absolute dimensional change and dimensional change DFS data were determined at both the premix production facility and at the parts producer. As expected, the absolute DC did vary between the two different sintering locations, but the overall range of absolute DC was 0.04 g/cm³. This iteration represents the potential density variation resulting solely from weight variation observed for each measured run. It is worth noting that the calculated density range [mean density variation was, at most, 0.04 g/cm³ for the part. This means that the potential DC variation from the maximum density variation is less than 0.005%, as shown in Fig. 18. This illustrates that DC is not just from potential chemical variations, but can also arise from variations in green density. To maintain the DC control required for a demanding application such as this WVT component with both rigid chemical control and part density will facilitate the required part performance. The consistency of both material AD and part density control required for a demanding application such as this WVT component, maintaining both rigid chemical control and part density will facilitate the required part performance.

Sintered carbon levels were also measured at the two locations and it was observed that the chemical bonding promoted very consistent results in this context. Consistency of sintered carbon is critical in maintaining the effective DC necessary for this WVT part. Table 10 presents the consistancy of weight productions using two lots and over three days of production for each lot. Of significance in these data is the relatively tight control capability. The specification for the part is a green weight range of 530 to 536 g. For each run, the consistency observed was approximately 50% of this given specification range. Equally importantly, over the production cycle for each lots, minimal variation in weight was observed. Table 10 includes a column representing the potential density variation resulting solely from weight variation observed for each measured run. It is worth noting that the calculated density range [mean density variation was, at most, 0.04 g/cm³ for the part. This means that the potential DC variation from the maximum density variation is less than 0.005%, as shown in Fig. 18. This illustrates that DC is not just from potential chemical variations, but can also arise from variations in green density. To maintain the DC control required for a demanding application such as this WVT component with both rigid chemical control and part density will facilitate the required part performance. The consistency of both material AD and part density control required for a demanding application such as this WVT component, maintaining both rigid chemical control and part density will facilitate the required part performance.

In the newly reported production-scale study, the AD for the twenty lots examined showed a total variation of 0.04 g/cm³. The significance of this tight control of AD is reduced press adjustment between lots as received for production. Previous work had shown that the chemical bonding gave excellent consistency within lot. Therefore, the need for tooling adjustments is reduced, leading to improved overall productivity.

Absolute dimensional change and dimensional change DFS data were determined at both the premix production facility and at the parts producer. As expected, the absolute DC did vary between the two different sintering locations, but the overall range of absolute DC was 0.04 g/cm³. This iteration represents the potential density variation resulting solely from weight variation observed for each measured run. It is worth noting that the calculated density range [mean density variation was, at most, 0.04 g/cm³ for the part. This means that the potential DC variation from the maximum density variation is less than 0.005%, as shown in Fig. 18. This illustrates that DC is not just from potential chemical variations, but can also arise from variations in green density. To maintain the DC control required for a demanding application such as this WVT component with both rigid chemical control and part density will facilitate the required part performance. The consistency of both material AD and part density control required for a demanding application such as this WVT component, maintaining both rigid chemical control and part density will facilitate the required part performance.

In the newly reported production-scale study, the AD for the twenty lots examined showed a total variation of 0.04 g/cm³. The significance of this tight control of AD is reduced press adjustment between lots as received for production. Previous work had shown that the chemical bonding gave excellent consistency within lot. Therefore, the need for tooling adjustments is reduced, leading to improved overall productivity.

Absolute dimensional change and dimensional change DFS data were determined at both the premix production facility and at the parts producer. As expected, the absolute DC did vary between the two different sintering locations, but the overall range of absolute DC was 0.04 g/cm³. This iteration represents the potential density variation resulting solely from weight variation observed for each measured run. It is worth noting that the calculated density range [mean density variation was, at most, 0.04 g/cm³ for the part. This means that the potential DC variation from the maximum density variation is less than 0.005%, as shown in Fig. 18. This illustrates that DC is not just from potential chemical variations, but can also arise from variations in green density. To maintain the DC control required for a demanding application such as this WVT component with both rigid chemical control and part density will facilitate the required part performance. The consistency of both material AD and part density control required for a demanding application such as this WVT component, maintaining both rigid chemical control and part density will facilitate the required part performance.

In the newly reported production-scale study, the AD for the twenty lots examined showed a total variation of 0.04 g/cm³. The significance of this tight control of AD is reduced press adjustment between lots as received for production. Previous work had shown that the chemical bonding gave excellent consistency within lot. Therefore, the need for tooling adjustments is reduced, leading to improved overall productivity.

Absolute dimensional change and dimensional change DFS data were determined at both the premix production facility and at the parts producer. As expected, the absolute DC did vary between the two different sintering locations, but the overall range of absolute DC was 0.04 g/cm³. This iteration represents the potential density variation resulting solely from weight variation observed for each measured run. It is worth noting that the calculated density range [mean density variation was, at most, 0.04 g/cm³ for the part. This means that the potential DC variation from the maximum density variation is less than 0.005%, as shown in Fig. 18. This illustrates that DC is not just from potential chemical variations, but can also arise from variations in green density. To maintain the DC control required for a demanding application such as this WVT component with both rigid chemical control and part density will facilitate the required part performance. The consistency of both material AD and part density control required for a demanding application such as this WVT component, maintaining both rigid chemical control and part density will facilitate the required part performance.

In the newly reported production-scale study, the AD for the twenty lots examined showed a total variation of 0.04 g/cm³. The significance of this tight control of AD is reduced press adjustment between lots as received for production. Previous work had shown that the chemical bonding gave excellent consistency within lot. Therefore, the need for tooling adjustments is reduced, leading to improved overall productivity.
industry events

2018

MAPP First International Conference
January 30-31, Sheffield, United Kingdom
mapp.ac.uk/events/mapp-1st-international-conference

SAE 2018 Hybrid & Electric Vehicle Technologies
February 20-22, San Diego, United States
www.sae.org/events/hybrid

METAV 2018
February 20-24, Düsseldorf, Germany
www.metav.com

PM-18 International Conference on Powder Metallurgy + Exhibition
February 21 - 23, Navi Mumbai, India
www.pmai.in/pm18

MIM2018
March 5-7, Irvine, United States
www.mim2018.org

PM China 2018
March 25-27, Shanghai, China
www.cn-pmsapo.com

ceramitec 2018
April 10-13, Munich, Germany
www.ceramitec.com

rapid + TCT
April 23-26, Fort Worth, United States
www.rapid3devent.com

Ceramics Expo
May 1-3, Cleveland, United States
www.ceramicsexpousa.com

Metalloobrabotka
May 14-18, Moscow, Russia
www.metalobr.ru/en/

AMPM2018 Additive Manufacturing with Powder Metallurgy Conference
June 17-19, San Antonio, USA
www.ampm2018.org

POWDERMET 2018
June 17-20, San Antonio, USA
www.powdermet2018.org

World PM20
September 16-20, Beijing, China
www.worldpm2018.com

Euro PM18 Congress & Exhibition
October 14-18, Bilbao, Spain
www.europm2018.com

Pick up your free copy at PM related events worldwide

Powder Metallurgy Review magazine is exhibiting at and/or being distributed at events highlighted with the Powder Metallurgy Review cover image.

Event listings and Media Partners

If you would like to see your Powder Metallurgy related event listed in this magazine and on our websites, please contact Paul Whittaker: email: paul@inovar-communications.com

We welcome enquiries regarding media partnerships and are always interested to discuss opportunities to cooperate with event organisers and associations worldwide.
Advertisers’ index

ACE Iron & Metal Co. Inc. 39
ALD Vacuum Technologies GmbH 18
Allemet Corporation 26
Amatek 16
AMPM2018 60
Arcast Inc. 10
Ceramitec 2018 74
DSH Technologies, LLC 14
eMBs Products & Service GmbH 30
Erowa AG 13
Euro PM2018 Inside back cover
Fluidtherm Technology Pvt. Ltd. 41/43
formnext 73
Gasbarre Products, Inc. 12
GEA Group AG 25
Hoeganaes Corporation Inside front cover
Höganäs AB Outside back cover
Kymera International 4
Lonza Inc. 27
Loomis Products Kaislefeld GmbH 6
Makin Metal Powders [UK] Ltd. 21
Metal AM magazine 45
METAV 2018 40
MIM 2018 68
MUT Advance Heating GmbH 31
Nanjing Hanrui Cobalt Co., Ltd. 37
PIM International magazine 96
PM China 2018 59
Perite Taiwan Co. Ltd. 33
POWDERMET2018 84
Powder Metallurgy Review magazine 58
rapid + TCT 83
Renishaw plc 28
Rio Tinto QMP 7
Ronald Britton 17
Sagwell Science Technology Co. Ltd. 35
SLM Solutions Group AG 23
System 3R International AG 34
TempTAB 19
Ultra Infiltrant 11
United States Metal Powders, Inc. 9
World PM2018 46

Advertise with us...

Combining print and digital publishing for maximum exposure

Powder Metallurgy Review is an international business-to-business publication dedicated to reporting on the technical and commercial advances in PM technology. Available in both print and digital formats, Powder Metallurgy Review is the perfect platform to promote your company to a global audience.

For more information contact Jon Crawford Advertising Sales Director Tel: +44 207 1939 769 Fax: +44 (0)1743 469909 Email: jonc@inovar-communications.com
Inspire industry to make more with less.

Do you want to achieve tighter tolerances and minimise machining work and scrap levels? Höganäs new high precision toolbox for customising Fe+Cu+C mixes enables you to tailor the powder composition to your specific application. Improving dimensional stability and copper distribution, it secures the highest possible raw material utilisation and takes your PM production to formerly unseen levels.

Tune up for top performance

Höganäs high precision Fe+Cu+C toolbox for improved operational excellence

The high precision toolbox

Inspire industry to make more with less.