Process developments enhance performance of PM soft magnetic materials

January 9, 2013

Two papers presented by Kobe Steel at the PM2012 Powder Metallurgy World Congress at Yokohama, Japan, October 14-18, 2012, addressed process developments aimed at enhancing two separate aspects of the performance of PM soft magnetic materials; firstly, minimising core loss for high frequency applications and secondly, increasing the mechanical strength of soft magnetic iron cores.

Dr David Whittaker reports for Powder Metallurgy Review/IPMD.net


Influence of particle size on core loss in dust cores, for high frequency application

A paper from Tomotsuna Kamijo, Hirofumi Hojo, Hiroyuki Mitani and Shinya Arima reported on a study of the influence of particle size on core losses in soft magnetic composite dust cores.

In an initial set of experiments, an atomised high purity iron powder 300NH was sieved into particle size fractions with mean particle size ranging from 30 µm to 85 µm. Powder samples from each of these fractions were then processed into soft magnetic composite cores with a density of 7.0 g/cm3 and core losses were then measured, over a range of frequencies, at 0.1T magnetic flux density.

fig1

Fig. 1 Relationship between mean particle size and core loss [1]

As shown in Fig. 1, total core loss was almost independent of powder particle size at 1 and 5 kHz frequencies, but, at higher frequencies, finer mean particle sizes are effective in driving down losses.

fig2

Fig. 2 Relationship between mean particle size and eddy current loss [1]

fig3

Fig. 3 Relationship between mean particle size and hysteresis loss [1]

The total core losses are sub-divided between eddy current losses and hysteresis losses in Figs. 2 and 3 respectively.

Again, finer mean particles sizes are seen to be effective in reducing eddy current losses.

In earlier reported studies with higher magnetisation conditions (1.3T), coarser powder sizes were observed to reduce coercive force and hence reduce hysteresis losses and, therefore, there was an optimum particle size for minimum total core losses. At the lower magnetisation conditions (0.1T) reported here, however, the movement distance of a magnetic domain wall is estimated to be much shorter and therefore particle size has minimal influence on hysteresis losses.

In terms of magnetic properties, therefore, it would be concluded that the finer the particle size, the better.

fig4

Fig. 4 Apparent densities and flow rates of powders with different particle sizes [1] 

However, particle size choice is also influenced by other considerations, such as compressibility, apparent density and flow rate, all of which deteriorate at finer particle sizes (Fig. 4). The authors have therefore concluded that a mean particle size of around 50µm probably represents the optimum compromise between low core loss and acceptable processibility.

It can be seen from Figs 2 and 3 that generally hysteresis loss accounts for more than 80% of total core loss. A need to find means of reducing hysteresis loss was therefore identified.

To achieve this objective, a second batch of powder samples was processed into soft magnetic composite cores and assessed, in terms of magnetic properties, in a similar manner to the initial batch.

For these samples, the 300NH powder was annealed three times at 970°C for 1.5 hours and was then sieved into fractions with mean particle sizes ranging from 30µm to 71 µm. These samples were then processed, using a combination of warm compaction and die wall lubrication, to achieve a density level of around 7.4 g/cm3.

fig5

Fig. 5 Relationship between mean particle size and hysteresis loss [1]

This processing route was found to reduce hysteresis loss by around 50%, compared with the initial powder batches (Fig. 5). The two sets of powder batches were observed to deliver almost identical results in terms of the relationship between eddy current loss and mean particle size.

Overall, the authors have therefore concluded that the triple annealed powder with around 50 µm mean particle size processed into a 7.4 g/cm3 soft magnetic composite is the most appropriate magnetic powder product and that the development of this outstanding low core loss product is expected to stimulate an expansion of the market penetration for SMCs.


Influence of oxidisation depth on strength of soft magnetic iron core for electric motors

A second paper, from Mamoru Hosakawa, Mikako Takeda and Watanu Urushihara, turned attention to another issue that can limit the use of PM soft magnetic cores – the mechanical strength of the iron core, which, if not adequate, can lead to damage or breakage during the production of complex shaped cores.

It has been observed that, during the process of forming the insulating layers between individual powder particles during the production of an iron core, voids and other defects can be created that can act as trigger points for fracture initiation. Therefore finding means of reducing these voids, while maintaining insulation between powder particles, has been deemed critical to increasing mechanical strength of the core.

The authors have investigated the development of a thermal process route to form iron oxide layers to fill the voids between powder particles and therefore enhance transverse rupture strength of the core.

fig6

Fig. 6 Relationship between thermal treatment temperature and transverse rupture strength [2]

An effective thermal treatment, in this context, was found to comprise lubricant decomposition at 400°C for 2 hours followed by a treatment at 550°C for 30 minutes (Fig. 6). A cross-sectional SEM image of a sample, subjected to this thermal treatment, is shown in Fig. 7. The sample was oxidised to a depth of 0.4 mm from the surface. The decomposition of the lubricant was effective in promoting oxidation to a greater depth within the sample, resulting in increased strength (Fig. 5).

fig7

Fig. 7 FE-SEM image [2]

However, oxidation was only observed in the region of the sample surface and it was surmised that strength could be further improved if oxidation depth could be increased. The use of an oxygen release additive agent combined with the lubricant decomposition during the thermal process was therefore investigated. Mannitol or lithium peroxide was added at a level of 0.1 wt% and an improvement of transverse rupture strength to 61-76 MPa was observed. The relationship between oxidation depth and transverse rupture strength is shown in Fig. 8.

fig8

Fig. 8 Relationship between the depth of oxidation and transverse rupture strength [2]

Following these studies, the authors are proposing to develop the strengthening technology for consolidated soft magnetic PM products.

Figure references

[1] From paper: ‘Influence of particle size on core loss in dust cores, for high frequency application’, Tomotsuna Kamijo, Hirofumi Hojo, Hiroyuki Mitani, Shinya Arima, Kobe Steel, Ltd., Japan. Presented at the PM2012 World PM Congress, Yokohama, October 15-18.

[2] From paper: ‘Influence of oxidisation depth on strength of soft magnetic iron core for electric motors’, Mamoru Hosakawa, Mikako Takeda and Watanu Urushihara, Kobe Steel, Ltd., Japan. Presented at the PM2012 World PM Congress, Yokohama, October 15-18.

 

Author: Dr David Whittaker. Dr Whittaker is a consultant to the Powder Metallurgy and associated industries. Contact +44 1902 338498 email: [email protected] 

 

PM2012 World Congress Proceedings

PM2012_logo

Papers presented at the PM2012 World Congress will be published by the JPMA/JSP&PM in the Congress Proceedings, available in early 2013. Further information will be posted on the conference website.

www.pm2012.jp

News | Articles | Market reviews | Search directory | Subscribe to e-newsletter

 

www.ipmd.net

January 9, 2013

In the latest issue of PM Review…

Download PDF

Extensive Powder Metallurgy industry news coverage, and the following exclusive deep-dive articles and reports:

  • “Scrap is the new gold” and other hardmetal and hard materials insights from Euro PM2023 Congress, Lisbon
  • IperionX: A Powder Metallurgy route to lower-cost recycled titanium plate, billet, bar and preforms with reduced CO2 emissions
  • A review of the sintering of iron-copper-carbon alloys for structural Powder Metallurgy applications

The latest news from the world of metal powders, delivered to your inbox

Don't miss any new issue of PM Review, and get the latest industry news. Sign up to our weekly newsletter.

Sign up

Join our community

Discover our magazine archive…

The free-to-access PM Review magazine archive offers unparalleled insight into the world of Powder Metallurgy from a commercial and technological perspective through:

  • Reports on visits to leading PM part manufacturers, metal powder manufacturers and industry suppliers
  • Articles on technology and application trends
  • Information on materials developments
  • Reviews of key technical presentations from the international conference circuit
  • International industry news

All past issues are available to download as free PDFs or view in your browser.

 

Browse the archive

 

Looking for PM production equipment, metal powders, R&D support and more?

Discover suppliers of these and more in our
advertisers’ index and buyer’s guide, available in the back of PM Review magazine.

  • Powders & materials
  • Powder process, classification & analysis
  • PM products
  • Atomisers & powder production technology
  • Compaction presses, tooling & ancillaries
  • Sintering equipment & ancillaries
  • Post-processing
  • Consulting & toll sintering
View online
Share via
Copy link