Ames leverages machine learning to discover new rare-earth compounds

March 22, 2022

Work is being carried out by Ames Lab and Texas A&M on training machine learning to assess the stability of rare-earth compounds (Courtesy ‘Machine-learning enabled thermodynamic model for the design of new rare-earth compounds’ by P. Singh, T. Del Rose, G. Vazquez, R. Arroyave, and Y. Mudryk)

Researchers from Ames Laboratory, the US Department of Energy Office of Science national laboratory operated by Iowa State University, and Texas A&M University have trained a machine-learning (ML) model to assess the stability of rare-earth compounds. This work was supported by Laboratory Directed Research and Development (LDRD) programme at Ames Laboratory. The framework that has been developed builds on current state-of-the-art methods for experimenting with compounds and understanding chemical instabilities.

Rare earth elements have a wide range of uses including clean energy technologies, energy storage, and permanent magnets. The Discovery of new rare-earth compounds is part of a larger effort by scientists to expand access to these materials.

The present approach is based on machine learning, a form of artificial intelligence (AI) driven by computer algorithms that improve through data usage and experience. Researchers used the upgraded Ames Laboratory Rare Earth database (RIC 2.0) and high-throughput density-functional theory (DFT) to build the foundation for their ML model.

High-throughput screening is a computational scheme that allows a researcher to test hundreds of models quickly. DFT is a quantum mechanical method used to investigate thermodynamic and electronic properties of many body systems. Based on this collection of information, the developed ML model uses regression learning to assess phase stability of compounds.

Tyler Del Rose, an Iowa State University graduate student, conducted much of the foundational research needed for the database by writing algorithms to search the web for information to supplement the database and DFT calculations. He also worked on experimental validation of the AI predictions and helped to improve the ML based models by ensuring they are representative of reality.

“Machine learning is really important here because when we are talking about new compositions, ordered materials are all very well known to everyone in the rare earth community,” stated Prashant Singh, the Ames Laboratory Scientist who led the DFT plus machine learning effort with Guillermo Vazquez and Raymundo Arroyave. “However, when you add disorder to known materials, it’s very different. The number of compositions becomes significantly larger, often thousands or millions, and you cannot investigate all the possible combinations using theory or experiments.”

Singh explained that the material analysis is based on a discrete feedback loop in which the AI/ML model is updated using new DFT database based on real-time structural and phase information obtained from our experiments. This process ensures that information is carried from one step to the next and reduces the chance of making mistakes.

Yaroslav Mudryk, the project supervisor, said that the framework was designed to explore rare earth compounds because of their technological importance, but its application isn’t limited to rare-earths research. The same approach can be used to train an ML model to predict magnetic properties of compounds, process controls for transformative manufacturing, and optimise mechanical behaviours.

“It’s not really meant to discover a particular compound,” Mudryk said. “It was: How do we design a new approach or a new tool for discovery and prediction of rare earth compounds? And that’s what we did.”

Mudryk has emphasised that this work is just the beginning; his team is exploring the full potential of this method, and are optimistic that there will be a wide range of applications for the framework in the future.

This research is further discussed in the paper ‘Machine-learning enabled thermodynamic model for the design of new rare-earth compounds’ by P. Singh, T. Del Rose, G. Vazquez, R. Arroyave, and Y. Mudryk, originally published in Acta Materialia.

www.ameslab.gov

www.tamu.edu

In the latest issue of PM Review…

Download PDF

Extensive Powder Metallurgy industry news coverage, and the following exclusive deep-dive articles and reports:

  • Hot Isostatic Pressing for the production of large, near-net shape components
  • Safeguarding PM part usage in a new automotive industry
  • How to make metal powders., Part 3
  • Company profile: Jiangxi Yuean Advanced Materials

The latest news from the world of metal powders, delivered to your inbox

Don't miss any new issue of PM Review, and get the latest industry news. Sign up to our weekly newsletter.

Sign up

From the industry…

Discover our magazine archive…

The free-to-access PM Review magazine archive offers unparalleled insight into the world of Powder Metallurgy from a commercial and technological perspective through:

  • Reports on visits to leading PM part manufacturers, metal powder manufacturers and industry suppliers
  • Articles on technology and application trends
  • Information on materials developments
  • Reviews of key technical presentations from the international conference circuit
  • International industry news

All past issues are available to download as free PDFs or view in your browser.

 

Browse the archive

 

Looking for PM production equipment, metal powders, R&D support and more?

Discover suppliers of these and more in our
advertisers’ index and buyer’s guide, available in the back of PM Review magazine.

  • Powders & materials
  • Powder process, classification & analysis
  • PM products
  • Atomisers & powder production technology
  • Compaction presses, tooling & ancillaries
  • Sintering equipment & ancillaries
  • Post-processing
  • Consulting & toll sintering
Download PDF
Share via
Copy link